摘要:
Embodiments of methods of fabricating protected contact plugs include forming an electrically insulating layer having a contact hole therein, on a semiconductor substrate and then forming an electrically conductive lower barrier layer that lines at least an upper portion of a sidewall of the contact hole. This lower barrier layer may comprise titanium nitride (TiN). A step is also performed to form an electrically conductive contact plug that extends in the contact hole, is electrically coupled to the lower barrier layer and protrudes above the electrically insulating layer. The contact plug may comprise tungsten (W). An electrically conductive upper barrier layer is then formed that extends on a protruded upper surface of the contact plug and on a surface of the lower barrier layer. A step may then be performed to pattern the upper barrier layer to define an electrically conductive barrier spacer that extends on a sidewall or end of the lower barrier layer and define an upper barrier layer cap on the protruded upper surface of the contact plug.
摘要:
A method of manufacturing a DRAM device comprises forming a bit line interlayer insulating layer over a substrate over which a bit line pattern is formed; planarizing the bit line interlayer insulating layer; forming enlarged grooves exposing a conductive layer of the bit line pattern; forming bit lines; forming a silicon nitride layer over the substrate; forming a silicon nitride pattern having silicon nitride spacers formed on side walls of the enlarged grooves positioned on the conductive layer; forming the bit lines at the enlarged width portions of the bit line pattern; forming storage node contacts, storage nodes, a dielectric layer, and plate electrodes at a cell area; forming a wiring interlayer insulating layer on the substrate; forming metal contact holes; and forming plugs filling the metal contact holes.
摘要:
A method of fabricating a capacitor storage node having HSG silicon on inner walls thereof, wherein the HSG silicon is formed on the inner walls of the storage node after a sacrificial insulating layer is removed, thereby increasing overall surface area of the storage node and preventing electrical bridges between adjacent storage nodes. The storage node is made of a double layer including a layer of crystallized silicon and a layer of amorphous silicon, formed in a storage opening that is formed in the sacrificial insulating layer. The crystallized silicon defines outer walls of the storage node and the amorphous silicon defines inner walls. After forming the storage node opening in the sacrificial insulating layer, crystallized silicon is formed in the opening. Amorphous silicon is then formed on the crystallized silicon. After removing the sacrificial insulating layer, HSG silicon is formed on the amorphous silicon layer.
摘要:
A method for fabricating a Dynamic Random Access Memory (DRAM) device includes the steps of forming a word line on a substrate, forming a first insulating layer on the substrate and on the word line, forming a bit line the first insulating layer, and forming a second insulating layer on the first insulating layer and on the bit line. A sacrificial layer is formed on the second insulating layer, and a contact hole is formed through the sacrificial layer, and the first and second insulating layers. A conductive plug is formed in the contact hole, and the sacrificial layer is removed thereby exposing upper side portions of the conductive plug to define a capacitor electrode.
摘要:
A method of manufacturing an active matrix LCD is disclosed whereby gate bus lines, gate electrodes and source bus line segments are patterned from the same vacuum deposited first metal layer. An insulating layer, semiconductor layer, extrinsic semiconductor layer and second metal layer are then successively deposited on the substrate. A TFT channel region is formed by etching each of these layers in a second patterning process. During this step, storage capacitors may be formed by patterning the second metal layer so that it overlaps part of the gate bus lines. A transparent conductive layer is next deposited on the substrate. Pixel electrodes are then formed by patterning the transparent conductive layer in a third patterning process. Further, using a portion of the transparent conductive layer as a mask, the second metal layer and part of the extrinsic semiconductor layer are etched to form source and drain electrodes. Additionally, the transparent conductive layer can be patterned to provide an electrical connection between adjacent bus line segments to form a plurality of electrically continuous source bus lines.