Abstract:
An organic light emitting display panel includes a light emitting diode array substrate and an encapsulation substrate adhered to the light emitting array diode substrate by an adhesive film. The light emitting array diode substrate includes a driving thin film transistor formed on a substrate, an organic light emitting diode including a first electrode connected to the driving thin film transistor, an organic emission layer formed on the first electrode, and a second electrode formed on the organic emission layer, and first and second passivation layers formed on the second electrode. In this regard, the first passivation layer is formed of an organic compound having at least one of the structural formulae described in Formula 1 below: wherein R1, R2, R3, R4, R5, and R6 are each independently selected from substituted or unsubstituted C6-C40 aromatic groups.
Abstract:
An organic light emitting display panel includes a light emitting diode array substrate and an encapsulation substrate adhered to the light emitting array diode substrate by an adhesive film. The light emitting array diode substrate includes a driving thin film transistor formed on a substrate, an organic light emitting diode including a first electrode connected to the driving thin film transistor, an organic emission layer formed on the first electrode, and a second electrode formed on the organic emission layer, and first and second passivation layers formed on the second electrode. In this regard, the first passivation layer is formed of an organic compound having at least one of the structural formulae described in Formula 1 below: wherein R1, R2, R3, R4, R5, and R6 are each independently selected from substituted or unsubstituted C6-C40 aromatic groups.
Abstract:
An organic light emitting display device includes a first electrode and a second electrode disposed on a substrate opposite to each other, a first stack including a hole injection layer, a first hole transport layer, a first light emitting layer, and a first electron transport layer sequentially stacked on the first electrode, a second stack including a second hole transport layer, a second light emitting layer, and a second electron transport layer sequentially stacked between the first stack and the second electrode, and a charge generation layer disposed between the first stack and the second stack and including an N-type charge generation layer and a P-type charge generation layer to control charge balance between the first and second stacks. The P-type charge generation layer is doped with 1% to 20% of a hole transport material based on a volume of the P-type charge generation layer.
Abstract:
An organic light emitting display device includes first and second electrodes facing each other on a substrate, a charge generation layer formed between the first and second electrodes, a first light emitting stack formed between the charge generation layer and the first electrode, and a second light emitting stack formed between the charge generation layer and the second electrode, wherein a hole injection layer of a light emitting stack to realize blue color of the first and second light emitting stacks is formed by doping a host formed of hexaazatriphenylene (HAT-CN) with 0.5% to less than 10% of a dopant formed of a hole transporting material based on a volume of the hole injection layer.
Abstract:
An organic light emitting display device includes first and second electrodes facing each other on a substrate, a charge generation layer formed between the first and second electrodes, a first light emitting stack formed between the charge generation layer and the first electrode, and a second light emitting stack formed between the charge generation layer and the second electrode, wherein a hole injection layer of a light emitting stack to realize blue color of the first and second light emitting stacks is formed by doping a host formed of hexaazatriphenylene (HAT-CN) with 0.5% to less than 10% of a dopant formed of a hole transporting material based on a volume of the hole injection layer.
Abstract:
An organic light emitting device containing a multilayer stack structure including n stacks between an anode and a cathode is described, wherein the respective stacks comprise a hole transport layer, a light emitting layer and an electron transport layer, an n-type charge generation layer and a p-type charge generation layer respectively provided between the different adjacent stacks, wherein the p-type charge generation layer comprises an indenofluorenedione derivative represented by Formula 1 or an imine derivative represented by Formula 2 or 3.
Abstract:
A tandem white organic light emitting device with improved efficiency, voltage and lifetime includes a first electrode and a second electrode opposing each other, a charge generation layer formed between the first electrode and the second electrode, a first stack disposed between the first electrode and the charge generation layer, the first stack including a first light emitting layer emitting blue light, and a second stack disposed between the charge generation layer and the second electrode, the second stack including a second light emitting layer including one or more hosts doped with a phosphorescent dopant emitting light having a longer wavelength than blue light, wherein the charge generation layer includes an n-type charge generation layer doped with a metal and a p-type charge generation layer made of an organic material.
Abstract:
An organic light emitting display device with enhanced luminous efficiency and color viewing angle and a method of manufacturing the same are disclosed. The method includes forming a first electrode of each of red, green, blue and white sub-pixels on a substrate, forming a white organic common layer on the first electrodes, and forming a second electrode on the white organic common layer, wherein the first electrodes each includes multiple transparent conductive layers and is formed such that a thickness of the first electrode of each of two sub-pixels among the red, green, blue and white sub-pixels is greater than a thickness of the first electrode of each of the other two sub-pixels, and at least two layers excluding the lowermost layer among the multiple transparent conductive layers of each first electrode are formed to cover opposite sides of the lowermost layer.
Abstract:
A tandem white organic light emitting device with improved efficiency, voltage and lifetime includes a first electrode and a second electrode opposing each other, a charge generation layer formed between the first electrode and the second electrode, a first stack disposed between the first electrode and the charge generation layer, the first stack including a first light emitting layer emitting blue light, and a second stack disposed between the charge generation layer and the second electrode, the second stack including a second light emitting layer including one or more hosts doped with a phosphorescent dopant emitting light having a longer wavelength than blue light, wherein the charge generation layer includes an n-type charge generation layer doped with a metal and a p-type charge generation layer made of an organic material.