Abstract:
An organic light emitting display device can include a substrate; a first electrode and an auxiliary electrode disposed on the substrate; a bank pattern disposed on a part of an upper surface of the first electrode and the auxiliary electrode, in which the bank pattern is divided into a first area and a second area disposed under the first area; a barrier rib disposed on a part of the upper surface of the auxiliary electrode, in which the barrier rib is divided into a third area having a reverse-tapered shape and a fourth area disposed under the third area and having a tapered shape; an organic emission layer disposed on the substrate; and a second electrode disposed on the organic emission layer.
Abstract:
An organic light emitting display element includes a substrate, a lower electrode positioned on the substrate, at least one organic light emitting layer positioned on the lower electrode, a metal doped layer positioned on the organic light emitting layer, and an upper electrode positioned on the metal doped layer that includes a conductive material, and is configured to transmit light. Such organic light emitting display element is capable of minimizing degeneration and damage to the organic light emitting layer caused by sputtering.
Abstract:
In an organic light emitting diode (OLED) display device and a method for fabricating the same, OLED pixels are patterned through a photolithography process, so a large area patterning can be performed and a fine pitch can be obtained, and an organic compound layer can be protected by forming a buffer layer of a metal oxide on an upper portion of the organic compound layer or patterning the organic compound layer by using a cathode as a mask, improving device efficiency. In addition, among red, green, and blue pixels, two pixels are patterned through a lift-off process and the other remaining one is deposited to be formed without patterning, the process can be simplified and efficiency can be increased.
Abstract:
In an organic light emitting diode (OLED) display device and a method for fabricating the same, OLED pixels are patterned through a photolithography process, so a large area patterning can be performed and a fine pitch can be obtained, and an organic compound layer can be protected by forming a buffer layer of a metal oxide on an upper portion of the organic compound layer or patterning the organic compound layer by using a cathode as a mask, improving device efficiency. In addition, among red, green, and blue pixels, two pixels are patterned through a lift-off process and the other remaining one is deposited to be formed without patterning, the process can be simplified and efficiency can be increased.
Abstract:
In an organic light emitting diode (OLED) display device and a method for fabricating the same, OLED pixels are patterned through a photolithography process, so a large area patterning can be performed and a fine pitch can be obtained, and an organic compound layer can be protected by forming a buffer layer of a metal oxide on an upper portion of the organic compound layer or patterning the organic compound layer by using a cathode as a mask, improving device efficiency. In addition, among red, green, and blue pixels, two pixels are patterned through a lift-off process and the other remaining one is deposited to be formed without patterning, the process can be simplified and efficiency can be increased.
Abstract:
In an organic light emitting diode (OLED) display device and a method for fabricating the same, OLED pixels are patterned through a photolithography process, so a large area patterning can be performed and a fine pitch can be obtained, and an organic compound layer can be protected by forming a buffer layer of a metal oxide on an upper portion of the organic compound layer or patterning the organic compound layer by using a cathode as a mask, improving device efficiency. In addition, among red, green, and blue pixels, two pixels are patterned through a lift-off process and the other remaining one is deposited to be formed without patterning, the process can be simplified and efficiency can be increased.