Abstract:
The present disclosure relates to a flat panel display embedding an optical imaging sensor such as a fingerprint image sensor. The present disclosure provides a flat panel display embedding an image sensor comprising: a display panel including a display area and a non-display area; and a directional optical unit having a length and a width corresponding to the display panel and a thickness, and attached on a top surface of the display panel, wherein the directional optical unit includes: a first cover plate and a second cover plate having a size corresponding to the length and the width and joining each other by a first low refractive layer between the first cover plate and the second cover plate; a light radiating film corresponding to the display area under the second cover plate; a light incident film disposed outside of the display area at one lateral side of the light radiating film, under the second cover plate; a second low refractive layer disposed under the light radiating film and the light incident film, and attached on the top surface of the display panel; and a light source disposed at the lateral side of the display panel as facing with the light incident film.
Abstract:
The invention relates to a method for producing a holographic optical element by providing a recording stack comprising at least one recording element laminated on at least one supporting element, irradiating at least a part of the recording stack with at least one recording beam in an irradiating step, wherein during the irradiating step, the recording stack bends, providing a bending deviation threshold for the recording stack, and adjusting at least one first process parameter such that an expected maximum bending deviation of the recording stack does not exceed the bending deviation threshold, wherein the at least one first process parameter influences the bending behavior of the recording stack during the irradiating step.
Abstract:
A fingerprint sensor integrated display using a holographic optical element and a recording and reconstruction method of the holographic optical element are disclosed. The fingerprint sensor integrated display includes a display panel on which an input image is displayed, a transparent substrate disposed on the display panel, and a light entering element configured to irradiate light from a light source onto the transparent substrate. A particular type of visual information is reconstructed through a holographic element at a location of the light entering element.
Abstract:
The present disclosure relates to a flat panel display embedding an optical imaging sensor such as a fingerprint image sensor. The present disclosure suggests a flat panel display embedding an image sensor comprising: a display panel including a display area and a non-display area; and a directional optical unit having a length and a width corresponding to the display panel and a thickness, and attached on a top surface of the display panel, wherein the directional optical unit provides a sensing light beam to the display area, and wherein the sensing light is collimated and directionized to a predetermined direction.
Abstract:
The present disclosure relates to a flat panel display embedding an optical imaging sensor such as a fingerprint image sensor. The present disclosure suggests a flat panel display embedding an image sensor comprising: a display panel including a display area and a non-display area; and a directional optical unit having a length and a width corresponding to the display panel and a thickness, and attached on a top surface of the display panel, wherein the directional optical unit provides a sensing light to the display area, and wherein the sensing light is collimated and directionized to a predetermined direction.
Abstract:
The present disclosure relates to a method for producing a beam shaping holographic optical element, which is configured to generate diffracted beams configured to reconstruct an image of a diffusor irrespectively of the point of impact of a pencil of light on the beam shaping holographic optical element, comprising providing a recording element, providing a master element comprising a particular pattern, forming a recording stack comprising the recording element and the master element such that the master element is arranged to the recording element in a closed-copy distance, irradiating at least a part of the recording stack with a reconstruction beam, irradiating at least a part of the recording stack with a reference beam, wherein at least one of the reconstruction beam or reference beam penetrates the master element to record the pattern of the master element onto the recording element.