Abstract:
A transparent display panel and a transparent display device including the same, including a plurality of data lines, a plurality of gate lines, and a plurality of pixel regions disposed in a matrix. The pixel region is configured by a plurality of sub pixels and includes transmission areas, circuit areas, and a plurality of emission areas which overlap with a part of the transmission areas and the circuit areas.
Abstract:
Embodiments of the present disclosure relate to a transparent touch display device, and more particularly, to a transparent display device including a touch electrode having a low reflection structure. The touch electrode having the low reflection structure may include a mesh type sensor metal formed a plurality of openings, a sensor transmission layer on the sensor metal, and a sensor auxiliary metal on the sensor transmission layer. Part of the incident light incident on the upper surface of the sensor auxiliary metal is reflected from the upper surface of the sensor auxiliary metal, and another part of the incident light incident on the upper surface of the sensor auxiliary metal is reflected from the upper surface of the sensor metal after passing through the sensor auxiliary metal and the sensor transmission layer.
Abstract:
A transparent display device is disclosed, which may reduce a yellowish phenomenon in a non-display area. The transparent display device comprises a substrate provided with a display area in which a plurality of subpixels are disposed, and a non-display area adjacent to the display area, a gate driver provided in the non-display area over the substrate, including a plurality of stages, a metal line provided between the gate driver and the display area, and a trench provided between the metal line and the display area.
Abstract:
A transparent display device is disclosed, which may improve transmittance in a non-display area and at the same reduce resistance of power lines. The transparent display device includes a substrate provided with a display area, in which a plurality of subpixels are disposed, and a non-display area adjacent to the display area. The device includes a plurality of power lines provided in the non-display area over the substrate and extended in parallel in a first direction. The display area includes first non-transmissive areas provided with the plurality of subpixels and a first transmissive area provided between the first non-transmissive areas, the non-display area includes second non-transmissive areas provided with the plurality of power lines and a second transmissive area provided between the second non-transmissive areas.
Abstract:
A transparent display device is disclosed, which may prevent a short circuit from occurring between first and second capacitor electrodes of a capacitor. The transparent display device includes a substrate provided with a display area including a transmissive area and a non-transmissive area, in which a plurality of subpixels are disposed, and a non-display area adjacent to the display area, a driving transistor provided in the non-transmissive area over the substrate, including an active layer, a gate electrode, a source electrode and a drain electrode, and a capacitor provided in the non-transmissive area over the substrate, including a first capacitor electrode and a second capacitor electrode. The second capacitor electrode is not overlapped with the active layer of the driving transistor.
Abstract:
The present embodiments relate to a transparent display panel having an excellent transparency, light-emitting efficiency, and viewing angle, and a transparent display device including the same.
Abstract:
A transparent display device is disclosed, which may reduce a yellowish phenomenon in a non-display area. The transparent display device comprises a substrate provided with a display area in which a plurality of subpixels are disposed, and a non-display area adjacent to the display area, a gate driver provided in the non-display area over the substrate, including a plurality of stages, a metal line provided between the gate driver and the display area, and a trench provided between the metal line and the display area.
Abstract:
A transparent display device is disclosed, which may reduce a yellowish phenomenon in a non-display area. The transparent display device comprises a substrate provided with a display area in which a plurality of subpixels are disposed, and a non-display area adjacent to the display area, a gate driver provided in the non-display area over the substrate, including a plurality of stages, a metal line provided between the gate driver and the display area, and a trench provided between the metal line and the display area.
Abstract:
A transparent display device is disclosed, which may improve light transmittance in a transmissive area and increase or maximize a light emission area in a non-transmissive area. The transparent display device includes a substrate provided with a display area including a transmissive area and a non-transmissive area, in which a plurality of subpixels are disposed, and a non-display area surrounding the display area, at least one insulating film provided over the substrate, anode electrodes provided in each of the plurality of subpixels over the at least one insulating film, a bank provided among the anode electrodes, a light emitting layer provided over the anode electrodes, and a cathode electrode provided over the light emitting layer. The at least one insulating film and the bank are provided in only the non-transmissive area.
Abstract:
A transparent display device is disclosed, which may enlarge a transmissive area and increase or maximize a light emission area in a non-transmissive area. The transparent display device includes a substrate provided with a display area including a transmissive area and a non-transmissive area, in which a plurality of subpixels are disposed, and a non-display area adjacent to the display area, at least one inorganic insulating film on the substrate, at least one organic insulating film on the at least one inorganic insulating film, anode electrodes provided in each of the plurality of subpixels over the at least one organic insulating film, a bank provided among the anode electrodes, a light emitting layer on the anode electrodes, and a cathode electrode on the light emitting layer, wherein the at least one inorganic insulating film, the at least one organic insulating film and the bank are provided in only the non-transmissive area.