Abstract:
A see-through organic light emitting display device including a light emitting region having a transparent anode, an organic light emitting layer, and a transparent cathode, and a see-through region having a transparent auxiliary electrode, which is configured to transmit external light. The transparent auxiliary electrode can be made from the same material as the transparent anode and separated from the transparent anode, and the transparent cathode extends into the see-through region so as to be electrically connected with the transparent auxiliary electrode.
Abstract:
A transparent display panel and a transparent display device including the same are disclosed. The transparent display panel includes a display region and a non-display region. The display region includes a plurality of light-emitting regions, a plurality of transmissive regions, a plurality of line regions spaced from each other and arranged in one direction, and a plurality of pixel circuit regions electrically connected to the light-emitting regions respectively to drive the light-emitting regions. Alternately-arranged adjacent line regions include alternately-arranged adjacent VSS voltage connection line and VDD voltage connection line, respectively. Thus, a new pixel arrangement structure that may increase or maximize a transparent area of a bezel and reduce or minimize a haze value without reducing transmittance of the display region may be realized.
Abstract:
A transparent display panel and a transparent display device including the same are disclosed. A transparent display panel includes a substrate having a display region including a plurality of light-emitting regions and a plurality of transmissive regions; and a plurality of line regions disposed over the substrate and extending across the display region, wherein an outer contour of each of the transmissive regions is at least partially curved or wherein each of the transmissive regions has a polygonal shape, and all internal angles of the polygon shape are obtuse. Thus, parallel regularity and periodicity of array of transmissive regions are avoided wherein a haze value is reduced by reducing or minimizing occurrence of light diffraction, and thus, clarity or visibility of an image is improved.
Abstract:
Various embodiments relate to an EM signal control circuit, an EM signal control method, and an organic light emitting display device. The EM signal control circuit according to an embodiment of the present invention includes additional elements (e.g., a transistor and a capacitor) configured to separate a set signal from a gate electrode of a transistor coupled to an output node and to stably keep turn-off of a transistor coupled to the output node. Voltage levels of a first emission power source and a first gate power source may be set differently from each other according to the present invention. Therefore, despite of a threshold voltage change of a transistor coupled to an output node, the transistor may remain turned off stably, thereby improving the reliability of the EM signal.
Abstract:
A non-glasses type stereoscopic image display device comprises: a display panel that comprises a plurality of sub-pixels and displays multi-view images in predetermined units; and an optical plate array that is formed side by side with the sub-pixels and divides the multi-view images into a plurality of multi-view areas, each of the sub-pixels comprising a first color sub-pixel, a second color sub-pixel, and a third color sub-pixel, which alternate in the same row along a horizontal direction in which gate lines extend and are formed side by side along a vertical direction in which data lines extend in different columns, wherein vertically neighboring sub-pixels displaying different colors partially overlap each other in the vertical direction.