Abstract:
A flexible display device comprises a flexible substrate including a display area and a non-display area; a display layer in the display area on a first surface of the flexible substrate; a polarizing plate on the display layer; and a cover coat in the non-display area on the first surface of the flexible substrate, the cover coat including a first end portion overlapping with the polarizing plate. At least a portion of the non-display area of the flexible substrate and the cover coat are bendable in a bending direction.
Abstract:
A flexible display device comprises a flexible substrate including a display area and a non-display area; a display layer in the display area on a first surface of the flexible substrate; a polarizing plate on the display layer; and a cover coat in the non-display area on the first surface of the flexible substrate, the cover coat including a first end portion overlapping with the polarizing plate. At least a portion of the non-display area of the flexible substrate and the cover coat are bendable in a bending direction.
Abstract:
According to an aspect of the present disclosure, an organic light emitting display apparatus includes an organic light emitting diode; a driving transistor which supplies a driving current to the organic light emitting diode; and a plurality of switching transistors to transmit a reference voltage and a data voltage to a gate electrode of the driving transistor, respectively. According to the present disclosure, one frame is divided into a refresh period in which a data voltage is written and a hold period in which the data voltage written in the refresh period is held. The refresh period includes an initialization period, a sampling period, a programming period, and an emission period, and the sampling period and the programming period may be separate from each other.
Abstract:
Disclosed is an electroluminescent display device. The electroluminescent display device includes a display area and a non-display area. And the electroluminescent display device includes a display panel including a plurality of pixel lines each including a plurality of pixel circuits.
Abstract:
A flexible display device comprises a flexible substrate including a display area and a non-display area; a display layer in the display area on a first surface of the flexible substrate; a polarizing plate on the display layer; and a cover coat in the non-display area on the first surface of the flexible substrate, the cover coat including a first end portion overlapping with the polarizing plate. At least a portion of the non-display area of the flexible substrate and the cover coat are bendable in a bending direction.
Abstract:
When using a flexible substrate to protect and support various components of an organic light emitting display device, among components including driving elements disposed on each of pixels of the organic light emitting display device, components where a high-level signal is applied during an emission period are grouped and are disposed on one side of the pixels. Further, components where a low-level signal is applied during the emission period are grouped and are disposed on the other side of the pixels. Accordingly, an electric field occurring due to a potential difference in the flexible substrate is minimized and shifting of a threshold voltage Vth of a thin-film transistor may be minimized. Thus, an OLED without an after-image can be provided.
Abstract:
A display panel and a method for fabricating the same are discussed. The display panel can include a first area in which pixels are disposed, and a second area in which pixels having lower pixels per inch (PPI) than the first area are disposed and a plurality of light-transmitting portions are disposed. The light-transmitting portions include circular or elliptical light-transmitting portions arranged in a zigzag pattern along a second direction crossing a first direction in the second area. Each of the pixel groups in the second area includes a second electrode, and the second electrode is removed from the light-transmitting area to expose light-transmitting portions.
Abstract:
A display device including a display panel including a plurality of light emitting areas; and a first optical electronic device located under the display panel. Further, a first optical display area of the display panel overlapping the first optical electronic device comprises a plurality of first light transmission areas in addition to the light emitting areas, a non-overlapping display area of the display panel not overlapping the first optical electronic device includes the light emitting areas without including the first light transmission areas, and a plurality of first horizontal lines for controlling the light emitting areas horizontally extend across the non-overlapping display area and the first optical display area. In addition, the light emitting areas included in the non-overlapping display area and the first optical area are arranged in a same row, a same first horizontal line controls the light emitting areas arranged in the same row in the non-overlapping display area and the first optical display area, the same first horizontal line comprise a first portion extending horizontally across the non-overlapping display area, a second portion extending horizontally across the first optical display area, and a connection portion located in the first optical display area and connecting the first portion and the second portion, and the connection portion is angled with respect to the first and second portions such that the second portion is shifted upwards or downwards from the first portion.
Abstract:
An electroluminescent display device comprises a pixel including a plurality of subpixels; a plurality of power lines for providing a power voltage to the plurality of subpixels; a data line for providing data signals to the plurality of subpixels; a plurality of gate lines for providing gate signals to the plurality of subpixels; and a reference node line for connecting a plurality of reference nodes included in the plurality of subpixels, wherein each of the subpixels comprises a light emitting diode and a subpixel driving circuit for controlling light emission of the light emitting diode, and wherein the subpixel driving circuit provides a driving current without including a high potential voltage to the light emitting diode as a reference voltage that is applied from one of the plurality of power lines to the reference node included in the subpixel driving circuit, and some of the plurality of subpixels include a compensation transistor connected to the reference node receiving the reference voltage.
Abstract:
When using a flexible substrate to protect and support various components of an organic light emitting display device, among components including driving elements disposed on each of pixels of the organic light emitting display device, components where a high-level signal is applied during an emission period are grouped and are disposed on one side of the pixels. Further, components where a low-level signal is applied during the emission period are grouped and are disposed on the other side of the pixels. Accordingly, an electric field occurring due to a potential difference in the flexible substrate is minimized and shifting of a threshold voltage Vth of a thin-film transistor may be minimized. Thus, an OLED without an after-image can be provided.