Abstract:
Disclosed is an electroluminescent display device. The electroluminescent display device includes a display area and a non-display area. And the electroluminescent display device includes a display panel including a plurality of pixel lines each including a plurality of pixel circuits.
Abstract:
A flexible organic electroluminescent device and a method for fabricating the same includes a substrate defined with a display area including a plurality of pixel regions and a non-display area at the outside thereof; a switching thin film transistor and a drive thin film transistor formed at the each pixel region on the substrate; an organic insulating layer deposited on the substrate including the switching thin film transistor and drive thin film transistor to expose a drain electrode of the drive thin film transistor; a first electrode formed in each pixel region on the inorganic insulating layer, and connected to the drain electrode of the drive thin film transistor; banks formed around each pixel region on the substrate including the first electrode and separated from one another; an organic light emitting layer separately formed for each pixel region on the first electrode; a second electrode formed on an entire surface of the display area on the organic light emitting layer; and an organic layer formed on an entire surface of the substrate including the second electrode.
Abstract:
Disclosed are an organic light emitting diode device, and a method for fabricating the same. The organic light emitting diode device comprises a non-active area formed outside an active area of a substrate; a switching thin film transistor and a driving thin film transistor at each of the pixel regions; a planarization layer on the substrate; a first electrode on the planarization layer; a bank formed in the non-active area outside each pixel region; an organic light emitting layer on the first electrode; a second electrode on an entire surface of the substrate; a first passivation layer on the substrate; an organic layer on the first passivation layer; a second passivation layer on the organic layer and the first passivation layer; a barrier film disposed to face the substrate.
Abstract:
A light emitting display apparatus includes a pixel driving circuit including a driving transistor and an anode reset capacitor connected to a gate of the driving transistor and a light emitting device configured to emit light with a current supplied through the driving transistor. An anode reset period, where a data voltage is not supplied to the driving transistor, is between refresh periods where the light emitting device emits the light with the data voltage supplied to the driving transistor, and an anode reset voltage supplied to the anode reset capacitor in the refresh period is higher than an initial voltage which is input to the gate of the driving transistor in the refresh period.
Abstract:
An organic light emitting display device is provided according to the present disclosure. An organic light emitting display device comprising a first planarization layer configured to planarize an upper portion of a circuit element on a substrate, an inorganic layer comprising a first out-gassing pattern on the first planarization layer, a second planarization layer configured to planarize an upper portion of the inorganic layer and a metal layer comprising a second out-gassing pattern on the second planarization layer.
Abstract:
An electroluminescence display device and manufacturing method thereof are provided. An electroluminescence display device includes a pixel, having: an electroluminescence diode, a driving transistor configured to supply a current to the electroluminescence diode, and a switching transistor configured to switch a signal supplied to the driving transistor, wherein a size of a channel area of the driving transistor is different from a size of a channel area of the switching transistor, and wherein a taper angle deviation of the channel areas of the driving transistor and the switching transistor is less than or equal to 10°.
Abstract:
A flexible display panel, and particularly, to a flexible display panel which is bendable, not an existing glass substrate, a fabrication method thereof, and an image display terminal unit using a flexible display panel are provided.In the case of the flexible display panel, the fabrication method, and the image display terminal unit, the flexible display panel is implemented with a plastic substrate, rather than the conventional glass substrate, and a portion of the non-active area of the display panel is cut to form a cutout portion to insert modules of the image display terminal unit into the cutout portion to thus reduce a receiving space of the lower housing, thereby minimizing a width of the bezel region.
Abstract:
A flexible organic electroluminescent device and a method for fabricating the same includes a substrate defined with a display area including a plurality of pixel regions and a non-display area at the outside thereof; a switching thin film transistor and a drive thin film transistor formed at the each pixel region on the substrate; an organic insulating layer deposited on the substrate including the switching thin film transistor and drive thin film transistor to expose a drain electrode of the drive thin film transistor; a first electrode formed in each pixel region on the inorganic insulating layer, and connected to the drain electrode of the drive thin film transistor; banks formed around each pixel region on the substrate including the first electrode and separated from one another; an organic light emitting layer separately formed for each pixel region on the first electrode; a second electrode formed on an entire surface of the display area on the organic light emitting layer; and an organic layer formed on an entire surface of the substrate including the second electrode.
Abstract:
Disclosed are an organic light emitting diode device, and a method for fabricating the same. The organic light emitting diode device comprises a non-active area formed outside an active area of a substrate; a switching thin film transistor and a driving thin film transistor at each of the pixel regions; a planarization layer on the substrate; a first electrode on the planarization layer; a bank formed in the non-active area outside each pixel region; an organic light emitting layer on the first electrode; a second electrode on an entire surface of the substrate; a first passivation layer on the substrate; an organic layer on the first passivation layer; a second passivation layer on the organic layer and the first passivation layer; a barrier film disposed to face the substrate.