Abstract:
A flexible organic electroluminescent device and a method for fabricating the same includes a substrate defined with a display area including a plurality of pixel regions and a non-display area at the outside thereof; a switching thin film transistor and a drive thin film transistor formed at the each pixel region on the substrate; an organic insulating layer deposited on the substrate including the switching thin film transistor and drive thin film transistor to expose a drain electrode of the drive thin film transistor; a first electrode formed in each pixel region on the inorganic insulating layer, and connected to the drain electrode of the drive thin film transistor; banks formed around each pixel region on the substrate including the first electrode and separated from one another; an organic light emitting layer separately formed for each pixel region on the first electrode; a second electrode formed on an entire surface of the display area on the organic light emitting layer; and an organic layer formed on an entire surface of the substrate including the second electrode.
Abstract:
The present invention relates to a flexible organic electroluminescent device, and the invention disclosed herein includes a switching thin film transistor and a drive thin film transistor formed at the each pixel region on a substrate; a first electrode connected to a drain electrode of the drive thin film transistor, and formed at the each pixel region; a bank formed on the display area and non-display area of the substrate; a spacer formed on a bank in the non-display area, and disposed in the vertical direction in parallel to a lateral surface of the display area; an organic light emitting layer separately formed for each pixel region; a second electrode formed on an entire surface of the organic light emitting layer; an organic layer formed on an entire surface of the substrate; a barrier film located to face the substrate.
Abstract:
A display device is disclosed, wherein the display device comprises a hole area on a substrate, a buffer area configured to surround the hole area, and a display area configured to surround the buffer area, wherein the display area includes a thin film transistor including a gate electrode, a source electrode, and a drain electrode on the substrate, the buffer area is provided with a damage preventing portion configured to control damages generated in a process of forming the hole area from extending to the display area, and the damage preventing portion is formed of a same material as a material of the source and drain electrodes.
Abstract:
Provided is an electroluminescence display device. The electroluminescence display device includes a display area, a non-display area positioned the outer periphery of the display area, a thin film transistor in the display area, and a power supply line in the non-display area and connected to the thin film transistor. The power supply line includes a first part and a second part separated from each other, and a third part connected to the first part and the second part, and also includes a first layer formed along an edge portion of the power supply line and covering the edge portion of the power supply line.
Abstract:
Disclosed are an organic light emitting diode device, and a method for fabricating the same. The organic light emitting diode device comprises a non-active area formed outside an active area of a substrate; a switching thin film transistor and a driving thin film transistor at each of the pixel regions; a planarization layer on the substrate; a first electrode on the planarization layer; a bank formed in the non-active area outside each pixel region; an organic light emitting layer on the first electrode; a second electrode on an entire surface of the substrate; a first passivation layer on the substrate; an organic layer on the first passivation layer; a second passivation layer on the organic layer and the first passivation layer; a barrier film disposed to face the substrate.
Abstract:
A display device can include an organic light emitting device in a display area on a substrate, a thin film transistor being connected with the organic light emitting device, a protecting portion surrounding at least a portion of a camera area on the substrate, a dam structure disposed between the thin film transistor and the protecting portion, an encapsulation layer, and a hole in the camera area. The encapsulation layer can include a first encapsulation layer, a second encapsulation layer on the first encapsulation layer, and a third encapsulation layer on the second encapsulation layer. The hole can be provided inside the display area, and the first encapsulation layer and the third encapsulation layer are disposed on a side surface and an upper surface of the dam structure.
Abstract:
A flexible organic electroluminescent device and a method for fabricating the same includes a substrate defined with a display area including a plurality of pixel regions and a non-display area at the outside thereof; a switching thin film transistor and a drive thin film transistor formed at the each pixel region on the substrate; an organic insulating layer deposited on the substrate including the switching thin film transistor and drive thin film transistor to expose a drain electrode of the drive thin film transistor; a first electrode formed in each pixel region on the inorganic insulating layer, and connected to the drain electrode of the drive thin film transistor; banks formed around each pixel region on the substrate including the first electrode and separated from one another; an organic light emitting layer separately formed for each pixel region on the first electrode; a second electrode formed on an entire surface of the display area on the organic light emitting layer; and an organic layer formed on an entire surface of the substrate including the second electrode.
Abstract:
Disclosed are an organic light emitting diode device, and a method for fabricating the same. The organic light emitting diode device comprises a non-active area formed outside an active area of a substrate; a switching thin film transistor and a driving thin film transistor at each of the pixel regions; a planarization layer on the substrate; a first electrode on the planarization layer; a bank formed in the non-active area outside each pixel region; an organic light emitting layer on the first electrode; a second electrode on an entire surface of the substrate; a first passivation layer on the substrate; an organic layer on the first passivation layer; a second passivation layer on the organic layer and the first passivation layer; a barrier film disposed to face the substrate.
Abstract:
A display device can include an organic light emitting device in a display area on a substrate, a thin film transistor being connected with the organic light emitting device, a protecting portion surrounding at least a portion of a camera area on the substrate, a dam structure disposed between the thin film transistor and the protecting portion, an encapsulation layer, and a hole in the camera area. The encapsulation layer can include a first encapsulation layer, a second encapsulation layer on the first encapsulation layer, and a third encapsulation layer on the second encapsulation layer. The hole can be provided inside the display area, and the first encapsulation layer and the third encapsulation layer are disposed on a side surface and an upper surface of the dam structure.
Abstract:
A display device includes an organic light emitting device in a display area on a substrate; a thin film transistor being connected with the organic light emitting device, the thin film transistor including a gate electrode, a source electrode and a drain electrode; a protecting portion surrounding at least a portion of a camera area on the substrate, the protecting portion formed of a same material as a material of the source electrode or the drain electrode; and a hole in the camera area, the hole provided inside the display area.