Abstract:
Embodiments disclosed herein relate to a touch display panel and a touch display device. By arranging a shielding structure, which is connected to a touch electrode in a region where a touch line and a data line overlap each other or is applied with a shielding signal corresponding to a touch driving signal from an outside circuit, between the touch line and the data line, it is possible to prevent direct capacitance from being formed between the touch line and the data line, and to prevent the capacitance formed due to the data line from causing noise on a touch sensing signal. In addition, by arranging a touch load reduction layer between the shielding structure and the touch line, it is also possible to reduce the capacitance between the touch line and the data line arranged in the horizontal direction, thereby improving touch sensing performance.
Abstract:
The present embodiments relate to a touch technology and, more particularly, to a touch display device, which includes multiple first electrodes embedded in a display panel, at least one second electrode positioned outside the display panel, and a touch force sensing gap existing between the multiple first electrodes and the at least one second electrode, a method for driving the same, and a driving circuit for driving the multiple first electrodes and the at least one second electrode. The present embodiments, as described above, make it possible to sense not only a touch position, but also a touch force, with which the user presses the screen during a touch.
Abstract:
A touch display device includes a display cathode electrode, a first touch cathode electrode adjacent to and disposed in the same layer as the display cathode electrode, a first touch line coupled with a touch driving circuit, a first touch bridge coupled with the first touch line, a second touch cathode electrode adjacent to and disposed in the same layer as the display cathode electrode, a second touch line coupled with the touch driving circuit, and a second touch bridge coupled with the second touch line. The first touch cathode electrode is electrically separated from and the second touch cathode electrode is electrically shorted with the display cathode electrode. The first touch bridge is coupled with the first touch cathode electrode. The second touch bridge is separated from the second touch cathode electrode, and the second touch line and the second touch cathode electrode are separated from each other.
Abstract:
In a touch display panel and a touch display device, a shielding pattern including the common electrode (COM) used as the touch electrode (TE) is disposed between a touch line (TL) and a data line (DL), and the touch line (TL) and the data line (DL) are arranged so as not to overlap each other in a boundary area between shielding patterns. The parasitic capacitance between the touch line (TL) and the data line (DL) can be reduced to improve the performance of touch sensing. In addition, the arrangement of the touch lines (TL) and data lines (DL) in the boundary area between shielding patterns is repeated at regular intervals to prevent an image abnormality.
Abstract:
A touch display device has a small bezel size even when touch routing lines connecting a touch sensor to a touch sensing circuit are disposed in a non-display area and can improve touch sensitivity by preventing the formation of parasitic capacitance caused by the touch routing lines.
Abstract:
Embodiments of the present disclosure relate to a touch display device, and more particularly, to a touch display device which can have a small bezel size even when touch routing lines connecting a touch sensor to a touch sensing circuit are disposed in a non-display area and which can improve touch sensitivity by preventing or minimizing the formation of parasitic capacitance that can be caused by the touch routing lines.
Abstract:
The present embodiments relate to a touch technology and, more particularly, to a touch display device, which includes multiple first electrodes embedded in a display panel, at least one second electrode positioned outside the display panel, and a touch force sensing gap existing between the multiple first electrodes and the at least one second electrode, a method for driving the same, and a driving circuit for driving the multiple first electrodes and the at least one second electrode. The present embodiments, as described above, make it possible to sense not only a touch position, but also a touch force, with which the user presses the screen during a touch.
Abstract:
A touch display panel and device. A common electrode is provided between a display driving signal line and a touch line. The common electrode functions as a shielding pattern that prevents display noise of a touch sensing signal without increasing the number of masks used to form the touch display device. A touch load reducing layer is disposed in a region between the touch line and the common electrode, except for a region in which the common electrode and pixel electrodes overlap. This reduces the load of the touch line and improves touch sensing performance without having an adverse effect on display driving.
Abstract:
The present embodiments relate to a driving circuit and a touch display apparatus for sensing a user's touch position and touch force with respect to a display panel, and further relate to a driving method thereof. The touch display apparatus may include a plurality of first electrodes that are configured to be embedded in a display panel, and a second electrode that is configured to be positioned outside the display panel. The touch display apparatus may read a force sensing signal from the second electrode through a signal detecting unit that is electrically connected to the second electrode. Therefore, it is possible to sense a touch force without separating a force sensing signal from a signal received from the first electrode, and to sense a user's touch force through the driving of the second electrode regardless of the driving mode of the first electrode.
Abstract:
Embodiments of the present invention relate to a display device having a force sensor structure and, more specifically, to a display device having a force sensor structure which, when a user's touch occurs, senses not only touch coordinates but also the user's touch force for pressing a screen, in order to provide various functions in various forms.