Abstract:
A cooking apparatus includes: a working coil, an inverter including a plurality of switching elements and configured to apply, by operating the plurality of switching elements, a resonant current of a predetermined frequency to the working coil, a phase detector configured to detect a phase difference between the resonant current and a voltage applied to an output terminal of the inverter, and a controller configured to calculate, based on the detected phase difference, a temperature of a target object that is placed above the working coil.
Abstract:
An induction heating device includes a working coil and a resonance capacitor, an inverter that performs a switching operation to supply a resonance current to the working coil, a plurality of snubber capacitors electrically connected to the inverter, a direct current (DC) link capacitor electrically connected to the inverter, and a relay configured to electrically connect one of the plurality of snubber capacitors to the DC link capacitor or the resonance capacitor.
Abstract:
An induction heating apparatus includes a working coil; an inverter configured to perform switching operation to thereby apply a resonance current to the working coil; and a controller configured to provide a control signal with a fixed frequency to the inverter to thereby control the switching operation. The controller changes a pulse width of the control signal based on a predetermined cycle that is set based on a temperature of the inverter.
Abstract:
An induction heating device includes first and second working coils connected to each other electrically in parallel, an inverter unit configured to cause a resonant current to flow in at least one of the first working coil or the second working coil, a first semiconductor switch configured to turn on and off the first working coil; a second semiconductor switch configured to turn on and off the second working coil; and a control unit configured to apply the resonant current to the first working coil or the second working coil by controlling the inverter unit, the first semiconductor switch, and the second semiconductor switch, and, based on a number of pulses or a frequency of the resonant current, to detect whether a target object is located at a location corresponding to the first working coil or the second working coil.
Abstract:
An induction heat cooking apparatus includes a rectifier to rectify an input voltage and to output a DC voltage; a plurality of switching devices to switch the DC voltage output from the rectifier; a plurality of heating coils to heat a cooking container according to control of the plurality of switching devices; and a controller to control the plurality switching devices to simultaneously drive two heating coils connected in parallel with each other among the plurality of heating coils.
Abstract:
An induction heating device includes first and second working coils connected electrically in parallel, an inverter unit configured to switch at least one of the first working coil or the second working coil, an inverter driving unit connected to the inverter unit; a first semiconductor switch connected to the first working coil, a first semiconductor switch driving unit connected to the first semiconductor switch, an over-current protection unit connected to the first semiconductor switch, configured to generate information based on a current that flows in the first semiconductor switch, and configured to, based on the information, determine whether to turn off the inverter driving unit, and a control unit that is configured to receive the information, and determine, based on the information, whether to block a pulse signal to the inverter driving unit and whether to turn off the first semiconductor switch driving unit.
Abstract:
An induction heating device includes a first coil that is wound about an axis by a first number of rotations, a second coil that is spaced apart from the first coil in a radial direction and that is disposed radially outward of the first coil, the second coil being wound about the axis by a second number of rotations, and a power supply unit configured to convert alternating current (AC) power and to supply a high-frequency AC to the first coil and to the second coil based on conversion of the AC power. The induction heating device is configured to output a maximum output level in a range from 6500 W to 7500 W based on a ratio between the first number of rotations and the second number of rotations.
Abstract:
An electronic induction heat cooking apparatus includes first and second cooker modules including at least one heating coil and a dual heating coil, the first cooker module includes any one of an inner coil and an outer coil included in the dual heating coil, switching elements for operating the coil and a first microcontroller unit for controlling the switching elements, the second cooker module includes the other of the inner coil and the outer coil included in the dual heating coil, switching elements for operating the other coil and a second microcontroller unit for controlling the switching elements, and the first microcontroller unit and the second microcontroller unit share an oscillator.
Abstract:
Provided is an induction heat cooking apparatus. The induction heat cooking apparatus includes a rectifying part rectifying an input voltage to output a DC voltage, an inverter switching the DC voltage outputted through the rectifying part to generate an AC voltage, a first heating part operated by the AC voltage applied from the inverter, a second heating part connected to the first heating part in parallel, the second heating part being operated by the AC voltage applied from the inverter, and a switching signal generation part controlling an operation state of each of the first and second heating parts from the inverter according to an operation mode inputted from the outside. The switching signal generation part includes a photo coupler.
Abstract:
An induction heating cooker is provided. The induction heating cooker may include a rectifier to rectify an input voltage into a direct current (DC) voltage and output the DC voltage, an inverter to generate an alternating current (AC) voltage by switching the DC voltage, a first heater driven by the AC voltage so as to heat a first cooking container, a second heater connected in parallel to the first heater, and driven by the AC voltage so as to heat a second cooking container, and a switching controller configured to output a switching signal to the inverter for controlling the first and second heaters in accordance with a selected operation mode. The selected operation mode may be a first operation mode for driving only the first heater, a second operation mode for driving only the second heater, or a third operation mode for driving both the first and second heaters at the same time.