Abstract:
The present invention provides a method and apparatus for seismic data acquisition. One embodiment of the method includes accessing data acquired by at least two particle motion sensors. The data includes a seismic signal and a noise signal and the at least two particle motion sensors being separated by a length determined based on a noise coherence length. The method may also include processing the accessed data to remove a portion of the noise signal.
Abstract:
A technique includes designing a streamer, which includes a cable and seismic sensors based at least in part on a relationship between vibration noise and a bending stiffness of the cable.
Abstract:
An apparatus includes particle motion sensors and a streamer that contains the particle motion sensors. The streamer is to be towed in connection with a seismic survey, and the towing of the streamer produces a turbulent flow. The streamer includes an inner cable that contains the particle motion sensors and a fluid containing layer to surround the inner cable to reduce noise otherwise sensed by the particle motion sensors due to the turbulent flow.
Abstract:
A technique includes receiving particle motion data acquired by particle motion sensors while in tow. The particle motion data are indicative of a seismic signal and a torque noise, and the particle motion sensors are oriented to modulate a wavenumber of a first component of the torque noise away from a signal cone that is associated with the seismic signal. The technique includes estimating the first component of the torque noise and based at least in part on the estimated first component, estimating a second component of the torque noise inside the signal cone. The technique includes suppressing the second component of the torque noise based at least in part on the estimated second component.
Abstract:
A particle motion sensor, includes: a sensing element capable of sensing a particle motion vector from a change in position thereof, and a packing material in which the sensing element is positioned, wherein the particle motion sensor is symmetric about its longitudinal axis and has a center of gravity coincident with its volumetric center. An apparatus includes a streamer; a plurality of acoustic sensors distributed along the streamer; and a plurality of particle motion sensors distributed along the streamer, at least one particle motion sensor being symmetric about its longitudinal axis and having a center of gravity coincident with its volumetric center.
Abstract:
A technique includes receiving data indicative of a first measurement acquired by a rotation sensor on a seismic streamer and based on the first measurement, estimating a torque noise present in a measurement acquired by a second sensor on the streamer. The technique includes attenuating the torque noise based on the estimate.
Abstract:
A computer-implemented method includes accessing a set of multicomponent marine noise data exhibiting a plurality of polarization vectors at each of a plurality of co-located pressure and particle motion data points on a marine seismic survey apparatus; and determining a set of perturbation noise data for the marine seismic survey apparatus from the polarization vectors. Computer readable program storage media are encoded with instructions that, when executed by a processor, perform the computer-implemented method. A computing apparatus is programmed to perform the computer-implemented method.
Abstract:
A technique includes designing a streamer, which includes a cable and seismic sensors based at least in part on a relationship between vibration noise and a bending stiffness of the cable.
Abstract:
A method and system for deploying seismic tows, such as seismic streamers, from a common carrier rope for conducting marine seismic surveys. The deployment system generally comprises a carrier rope having at least one deflector urging the carrier rope laterally relative to the towing vessel and seismic tows that are independently moveable along the deployed carrier rope to desired locations from which to be deployed. The carrier rope may be deployed from the tow vessel into the water prior to deploying the seismic streamer(s) into the water.
Abstract:
A technique includes receiving particle motion data acquired by particle motion sensors while in tow. The particle motion data are indicative of a seismic signal and a torque noise, and the particle motion sensors are oriented to modulate a wavenumber of a first component of the torque noise away from a signal cone that is associated with the seismic signal. The technique includes estimating the first component of the torque noise and based at least in part on the estimated first component, estimating a second component of the torque noise inside the signal cone. The technique includes suppressing the second component of the torque noise based at least in part on the estimated second component.