摘要:
A method and apparatus for testing a scan-based 3D integrated circuit (3DIC) using time-division demultiplexing/multiplexing allowing for high-data-rate scan patterns applied at input/output pads converting into low-data-rate scan patterns applied to each embeddded module in the 3DIC. A set of 3D design guidelines is proposed to reduce the number of test times and the number of through-silicon vias (TSVs) required for both pre-bond testing and post-bond testing. The technique allows reuse of scan patterns developed for pre-bond testing of each die (layer) for post-bond testing of the whole 3DIC. It further reduces test application time without concerns for I/O pad count limit and risks for fault coverage loss.
摘要:
A method for performing robust scan synthesis for soft-error protection on a design for generating a robust scan design in a system is modeled selectively at a register-transfer level (RTL) or a gate level; the design includes at least a sequential element or a scan cell for mapping to a robust scan cell of a select robust scan cell type. The method comprises performing a scan replacement and a scan stitching on the design database based on a given control information file for synthesizing the robust scan cell on the design database; and generating the synthesized robust scan design at a pre-determined RTL or a pre-determined gate level.
摘要:
A method for performing robust scan synthesis for soft-error protection on a design for generating a robust scan design in a system. The system is modeled selectively at a register-transfer level (RTL) or a gate level; the design includes at least a sequential element or a scan cell for mapping to a robust scan cell of a select robust scan cell type. The method comprises performing a scan replacement and a scan stitching on the design database based on a given control information file for synthesizing the robust scan cell on the design database; and generating the synthesized robust scan design at a pre-determined RTL or a pre-determined gate level.
摘要:
A method for performing robust scan synthesis for soft-error protection on a design for generating a robust scan design in a system. The system is modeled selectively at a register-transfer level (RTL) or a gate level; the design includes at least a sequential element or a scan cell for mapping to a robust scan cell of a select robust scan cell type. The method comprises performing a scan replacement and a scan stitching on the design database based on a given control information file for synthesizing the robust scan cell on the design database; and generating the synthesized robust scan design at a pre-determined RTL or a pre-determined gate level.
摘要:
A method for automatically generating test patterns using a close-to-minimum number of configurations for a Field Programmable Gate Array (FPGA) to reduce test data volume and test application time. The FPGA can be a standalone programmable device or a circuit embedded in an Application Specific Integrated Circuit (ASIC).
摘要:
An apparatus and method for soft-error resilience or correction with the ability to perform a manufacturing test operation, a slow-speed snapshot operation, a slow-speed signature analysis operation, an at-speed signature analysis operation, a defect tolerance operation, or any combination of the above operations. In one embodiment, an apparatus includes a system circuit, a shadow circuit, and an output joining circuit for soft-error resilience. The output joining circuit coupled to the output terminals of the system circuit and the shadow circuit includes at least an S-element for defect tolerance. In another embodiment, an apparatus includes a system circuit, a shadow circuit, a debug circuit, and an output joining circuit for soft-error correction. The output joining circuit coupled to the output terminals of the system circuit, the shadow circuit, and the debug circuit includes at least a V-element for defect tolerance.
摘要:
An apparatus and method for soft-error resilience or correction with the ability to perform a manufacturing test operation, a slow-speed snapshot operation, a slow-speed signature analysis operation, an at-speed signature analysis operation, a defect tolerance operation, or any combination of the above operations. In one embodiment, an apparatus includes a system circuit, a shadow circuit, and an output joining circuit for soft-error resilience. The output joining circuit coupled to the output terminals of the system circuit and the shadow circuit includes at least an S-element for defect tolerance. In another embodiment, an apparatus includes a system circuit, a shadow circuit, a debug circuit, and an output joining circuit for soft-error correction. The output joining circuit coupled to the output terminals of the system circuit, the shadow circuit, and the debug circuit includes at least a V-element for defect tolerance.
摘要:
A method and apparatus for compacting test responses containing unknown values in a scan-based integrated circuit. The proposed X-driven compactor comprises a chain-switching matrix block and a space compaction logic block. The chain-switching matrix block switches the internal scan chain outputs before feeding them to the space compaction logic block for compaction so as to minimize X-induced masking and error masking. The X-driven compactor further selectively includes a finite-memory compaction logic block to further compact the outputs of the space compaction logic block.
摘要:
A broadcaster, system, and method for reducing test data volume and test application time in an ATE (automatic test equipment) in a scan-based integrated circuit. The scan-based integrated circuit contains multiple scan chains, each scan chain comprising multiple scan cells coupled in series. The broadcaster is a combinational logic network coupled to an optional virtual scan controller and an optional scan connector. The virtual scan controller controls the operation of the broadcaster. The system transmits virtual scan patterns stored in the ATE and generates broadcast scan patterns through the broadcaster for testing manufacturing faults in the scan-based integrated circuit. The number of scan chains that can be supported by the ATE is significantly increased. Methods are further proposed to reorder scan cells in selected scan chains, to generate the broadcast scan patterns and virtual scan patterns, and to synthesize the broadcaster and a compactor in the scan-based integrated circuit. The scan architecture used can also be random access scan based, where the integrated circuit comprises an array of random access scan (RAS) cells that are randomly and uniquely addressable. In random access scan, test patterns can be applied by selectively updating RAS cells and test responses can be observed through a direct read-out process. Eliminating the shifting process inherent in serial scan, random access scan produces much lower test power dissipation than serial scan.
摘要:
A pipelined scan compression method and apparatus for reducing test data volume and test application time in a scan-based integrated circuit without reducing the speed of the scan chain operation in scan-test mode or self-test mode. The scan-based integrated circuit contains one or more scan chains, each scan chain comprising one or more scan cells coupled in series. The method and apparatus includes a decompressor comprising one or more shift registers, a combinational logic network, and an optional scan connector. The decompressor decompresses a compressed scan pattern on its compressed scan inputs and drives the generated decompressed scan pattern at the output of the decompressor to the scan data inputs of the scan-based integrated circuit. Any input constraints imposed by said combinational logic network are incorporated into an automatic test pattern generation (ATPG) program for generating the compressed scan pattern for one or more selected faults in one-step.