Abstract:
An optical module includes a first optics group, a second optics group, and an image sensor, wherein the first optics group and second optics group are configured to provide an image having a focus and a magnification to the image sensor. In some embodiments of the present invention, a first optics assembly includes a first optics group coupled to a threaded portion of a first lead screw so that translation of the first lead screw results in translation of the first optics group along an axis of the first lead screw, a first actuator for rotating the first lead screw; and a first sensing target configured to permit detection of rotation of the first lead screw. In some embodiments of the present invention a second optics assembly includes a second optics group coupled to a threaded portion of a second lead screw so that translation of the second lead screw results in translation of the second optics group along an axis of the second lead screw, a second actuator for rotating the second lead screw, and second means for sensing configured to detect rotation of the second lead screw.
Abstract:
A miniature camera module comprising: a module frame comprising a surface with a conduit passing through the surface, thereby allowing light to pass through the surface via the conduit; a first blade coupled to the module frame and configured to rotate about a first axis between an open position and a closed position, wherein the first blade does not eclipse the conduit at all when in the open position and the first blade at least partially eclipses the conduit when in the closed position; a first solenoid coupled to the module frame; and a first pin coupled to the first solenoid, wherein an actuation of the first solenoid causes the first pin to rotate the first blade from the open position to the closed position. In some embodiments, the module includes additional blades, solenoids and pins.
Abstract:
Embodiments of the present invention relate to systems and methods of position sensing that use a sensing target with a pattern of features thereupon, and to positioning modules and systems that position functional elements using such position sensing systems. A position sensing system includes an encoding module and a processing module. The encoding module has an active encoding region through which the sensing target is configured to move. Further, the encoding module is configured to generate a signal based on a portion of the sensing target within the active encoding region. The active encoding region has a dimension greater than the average critical dimension of the pattern of features. The processing module is configured to convert the signal generated into a position data based on an input range condition and an initial position condition.
Abstract:
An optical module includes a first optics group, a second optics group, and an image sensor, wherein the first optics group and second optics group are configured to provide an image having a focus and a magnification to the image sensor. In some embodiments of the present invention, a first optics assembly includes a first optics group coupled to a threaded portion of a first lead screw so that rotation of the first lead screw results in translation of the first optics group along an axis of the first lead screw, a first actuator for rotating the first lead screw; and a first sensing target configured to permit detection of rotation of the first lead screw. In some embodiments of the present invention a second optics assembly includes a second optics group coupled to a threaded portion of a second lead screw so that rotation of the second lead screw results in translation of the second optics group along an axis of the second lead screw, a second actuator for rotating the second lead screw, and second means for sensing configured to detect rotation of the second lead screw.
Abstract:
The present invention is a miniature camera module for use in miniature camera applications. It is an object of the present invention to provide the miniature camera module with solenoid controlled blades in order to alter the amount and quality of light passing through a conduit disposed on the surface of the module. In some embodiments of the present invention, the blade comprises a shutter to completely block light. In other embodiments, the blade comprises an aperture, a neutral-density filter, a monochromatic filter, and the like. In some embodiments of the present invention, the miniature camera module is positioned within a more elaborate miniature camera chassis.
Abstract:
A compact through-the-lens digital camera comprising an objective lens unit, an image sensing device, an internal display device, an eye lens unit, an optical system, control and processing circuitry, function select controls, and an external interface. The optical system is switchable between an image framing mode optical path, wherein light is directed from the objective lens unit to the eye lens unit, an image capture mode optical path, wherein light is directed from the objective lens unit to the image sensing device, and an image review mode optical path, wherein light is directed from the display device to the eye lens unit. The control and processing circuitry switches the optical system between the image framing mode optical path, the image capture mode optical path and the image review mode optical path and controls the image capture, processing, storage and display on the display device, the operation of the zoom and auto focus functions and function select controls and external communication through the external interface.
Abstract:
A motor may be configured to drive a drive shaft and an engagement member supported on the drive shaft. A detectable feature comprising a rotary member may be supported on the drive shaft such that movement of the drive shaft by the motor changes a state of the detectable feature. At least one sensor may be arranged to detect the state of the detectable feature. Circuitry may be configured to provide a signal in response to a change in the state of the detectable feature detected by the at least one sensor.
Abstract:
An optical module includes a first optics group, a second optics group, and an image sensor, wherein the first optics group and second optics group are configured to provide an image having a focus and a magnification to the image sensor. In some embodiments of the present invention, a first optics assembly includes a first optics group coupled to a threaded portion of a first lead screw so that rotation of the first lead screw results in translation of the first optics group along an axis of the first lead screw, a first actuator for rotating the first lead screw; and a first sensing target configured to permit detection of rotation of the first lead screw. In some embodiments of the present invention a second optics assembly includes a second optics group coupled to a threaded portion of a second lead screw so that rotation of the second lead screw results in translation of the second optics group along an axis of the second lead screw, a second actuator for rotating the second lead screw, and second means for sensing configured to detect rotation of the second lead screw.
Abstract:
An optical module includes a first optics group, a second optics group, and an image sensor, wherein the first optics group and second optics group are configured to provide an image having a focus and a magnification to the image sensor. In some embodiments of the present invention, a first optics assembly includes a first optics group coupled to a threaded portion of a first lead screw so that rotation of the first lead screw results in translation of the first optics group along an axis of the first lead screw, a first actuator for rotating the first lead screw; and a first sensing target configured to permit detection of rotation of the first lead screw. In some embodiments of the present invention a second optics assembly includes a second optics group coupled to a threaded portion of a second lead screw so that rotation of the second lead screw results in translation of the second optics group along an axis of the second lead screw, a second actuator for rotating the second lead screw, and second means for sensing configured to detect rotation of the second lead screw.
Abstract:
The present invention relates to methods of manufacturing ultra-compact camera modules, adjusting them, post production, to precise focal point settings, and sealing the precisely aligned assembly to maintain the focal point. Also, the invention specifically relates to ultra-compact camera module apparatuses.