Abstract:
The present invention relates to a method for producing a hydride having a carbon number of 4, comprising contacting, in liquid phase, an unsaturated compound having a carbon number of 4 as a raw material with a solid catalyst obtained by loading a metal element belonging to Groups 9 to 11 of the long periodic table on a support, thereby performing hydrogenation to produce a corresponding hydride having a carbon number of 4, wherein hydrogenation is performed in the presence of, as a solvent, a 1,4-butanediol having a nitrogen component concentration of 1 ppm by weight to 1 wt % in terms of nitrogen atom.
Abstract:
The present invention relates to a method for producing furfural, including: obtaining a sugar solution containing at least one of a monosaccharide having 5 carbon atoms and a polysaccharide containing the monosaccharide having 5 carbon atoms by carrying out a reaction with a specific resource as a raw material in the presence of a catalyst in a solvent; converting at least one of the monosaccharide and the polysaccharide containing the monosaccharide in the sugar solution into furfural by a dehydration reaction, so as to obtain a reaction solution; and separating the reaction solution into an organic layer and an aqueous layer, wherein an aromatic hydrocarbon solvent having a density of from 0.90 g/cm3 to 1.1 g/cm3 at 25° C. and under atmospheric pressure is used, and wherein the reaction solution is separated at a temperature higher than 90° C. and lower than 150° C.
Abstract:
A problem is to provide an industrially advantageous method in which in purifying a furfural composition, the formation of a solid matter which have been unable to be controlled so far is stably reduced, and furfural is purified with high efficiency wherein the problem has been solved by a method for producing furfural including distilling a composition containing furfural by a distillation column to obtain furfural, wherein a concentration of a furfural dimer in a column bottom liquid of the distillation column is controlled to 20 ppm by mass to 5,000 ppm by mass.
Abstract:
The present invention relates to a method for producing tetrahydrofuran comprising: feeding raw material 1,4-butanediol containing gamma butyrolactone to a reaction tank, and performing a dehydration cyclization reaction in the presence of a homogeneous acid catalyst having a pKa of 4 or less and being dissolvable in 1,4-butanediol to produce tetrahydrofuran, wherein a gas containing tetrahydrofuran, gamma butyrolactone and water in the reaction tank is introduced into a heat exchanger and when obtaining a condensate from the outlet of the heat exchanger, the ratio of the concentration of gamma butyrolactone in the condensate based on the concentration of gamma butyrolactone in the raw material 1,4-butanediol is from 20 to 100%.
Abstract:
An object of the present invention is to provide an industrially advantageous production method of 1,4BG, ensuring that generation of THF in the crude 1,4BG can be also suppressed and at the same time, the concentration of 2-(4-hydroxybutoxy)-tetrahydrofuran can be reduced. The present invention relates to a method for producing 1,4-butanediol, comprising heating crude 1,4-butanediol containing from 0.01 to 0.5 wt % of 2-(4-hydroxybutoxy)-tetrahydrofuran and from 1 to 25 wt % of water at 80° C. or more in the presence of an amine to obtain purified 1,4-butanediol.