摘要:
A method of selecting a crack resistant layer to be applied to an existing surface, the method comprising the steps of: selecting at least one emulsified bituminous binder to examine, where the emulsified bituminous binder comprises bitumen, one or more emulsifier, and one or more polymers, where the one or more polymers, the one or more emulsifier, or both include a sufficient amount of conjugated diene such that at least 2.5% of the weight of the emulsified bituminous binder residuum comprises conjugated diene, preferably at least 3.0%, more preferably at least 3.5%, and most preferably 4.0%; forming at least one bituminous mixture comprising the emulsified bituminous binder and an aggregate; testing each bituminous mixture for fatigue properties; and selecting a bituminous binder for use in the crack resistant layer. The method may further comprise the steps of testing the bituminous mixture for fracture energy and selecting the emulsified bituminous binder for use in the crack resistant layer based on fatigue properties and fracture energy properties, and/or testing the emulsified bituminous binder residuum for fracture energy and selecting the emulsified bituminous binder for use in the crack resistant layer based on fatigue properties and bituminous binder residuum fracture energy properties.
摘要:
A method of selecting a crack resistant layer to be applied to an existing surface, the method comprising the steps of: selecting at least one bituminous binder to examine, where the bituminous binder comprises bitumen and one or more polymers, where the one or more polymers include a sufficient amount of conjugated diene such that at least 2.5% of the bituminous binder's weight comprises conjugated diene, preferably at least 3.0%, more preferably at least 3.5%, and most preferably 4.0%; forming at least one bituminous mixture comprising the bituminous binder and an aggregate; testing each bituminous binder for binder fracture energy properties; and selecting a bituminous binder for use in the crack resistant layer. The method may further comprise the steps of testing the bituminous mixture for fatigue properties and selecting the bituminous binder for use in the crack resistant layer based on fatigue properties and binder fracture energy properties, and/or testing the bituminous mixture for fracture energy and selecting the bituminous binder for use in the crack resistant layer based on mixture fracture energy properties and bituminous binder fracture energy properties.
摘要:
A method of selecting a crack resistant layer to be applied to an existing surface, the method comprising the steps of: selecting at least one bituminous binder to examine, where the bituminous binder comprises bitumen and one or more polymers, where the one or more polymers include a sufficient amount of conjugated diene such that at least 2.5% of the bituminous binder's weight comprises conjugated diene, preferably at least 3.0%, more preferably at least 3.5%, and most preferably 4.0%; forming at least one bituminous mixture comprising the bituminous binder and an aggregate; testing each bituminous mixture for fatigue properties; and selecting a bituminous binder for use in the crack resistant layer. The method may further comprise the steps of testing the bituminous mixture for fracture energy and selecting the bituminous binder for use in the crack resistant layer based on fatigue properties and fracture energy properties, and/or testing the bituminous binder for fracture energy and selecting the bituminous binder for use in the crack resistant layer based on fatigue properties and bituminous binder fracture energy properties.
摘要:
A method for formulating an emulsified polymer modified asphalt, and the emulsion thus created. The method includes mixing at least one polymer and a first binder in a high shear device to produce a polymer-binder composite; mixing the polymer-binder composite with a second binder to form a polymer modified asphalt; and emulsifying the polymer modified asphalt by combining effective amounts of an emulsifying agent and of water with the polymer modified asphalt.
摘要:
A method of making a polymer-binder composite, and the composite thus created. The method employs a high shear device that mixes together polymer with binder, and optionally with additive. The mixing is accomplished in less than one hour, less than 30 minutes or less than 3 minutes, and done at high shear rates. The shear conditions are defined by scalar shear quantity greater than 10,000, 20,000 or 25,000, resident time of greater than 0.5, 1.0 or 5 seconds, and energy utilized per unit mass of greater than 0.5, 1.0 or 2.0 KW/KG. The composite thus produced can be made with a high percentage of polymers. It can be cooled and cut into pellets that are dry and stable at normal temperatures and which can be stored or transported without heating to secondary mixing locations. The composite pellets are quickly soluble in the additional binder.
摘要:
The invention is a foamed bituminous emulsion comprising a bituminous emulsion and vapor entrained within the bituminous emulsion, such that the foamed bituminous emulsion is a frothy mass of foam. The temperature of the foamed bituminous emulsion may be less than 100° C., less than 75° C., or less than 50° C. The vapor entrained within the bituminous emulsion may have a volume greater than 5%, 25%, or 50% by volume of the volume of the bituminous emulsion. The foamed bituminous emulsion may be combined with paving materials to produce a foamed bituminous emulsion paving mixture. A layer may by produced by forming a bituminous emulsion; foaming the bituminous emulsion to produce a foamed bituminous emulsion, where foaming the bituminous emulsion comprises causing vapor to become entrained within the bituminous emulsion; combining the foamed bituminous emulsion with paving materials to produce a paving mixture; and applying the paving mixture to an existing surface to form a new surface. The method may further comprise compacting the new surface. The paving mixture may have a temperature less than 100° C., less than 75° C., or less than 50° C. when applied to the existing surface.
摘要:
A method for formulating an emulsified polymer modified asphalt, and the emulsion thus created. The method includes mixing at least one polymer and a first binder in a high shear device to produce a polymer-binder composite, where the polymer is at least 70% butadiene; mixing the polymer-binder composite with a second binder to form a polymer modified asphalt; and emulsifying the polymer modified asphalt by combining effective amounts of an emulsifying agent and of water with the polymer modified asphalt. The polymer-binder composite may be produced at lower than room temperature or may include metal fatty acids, such that the resultant polymer-binder composite may be stored and transported at room temperature.
摘要:
A method of selecting a crack resistant layer to be applied to an existing surface, the method comprising the steps of: selecting at least one emulsified bituminous binder to examine, where the emulsified bituminous binder comprises bitumen, one or more emulsifier, and one or more polymers, where the one or more polymers, the one or more emulsifier, or both include a sufficient amount of conjugated diene such that at least 2.5% of the emulsified bituminous binder residuum weight comprises conjugated diene, preferably at least 3.0%, more preferably at least 3.5%, and most preferably 4.0%; forming at least one bituminous mixture comprising the emulsified bituminous binder and an aggregate; testing each bituminous mixture for mixture fracture energy properties; and selecting a emulsified bituminous binder for use in the crack resistant layer. The method may further comprise the steps of testing the bituminous mixture for fatigue properties and selecting the emulsified bituminous binder for use in the crack resistant layer based on fatigue properties and mixture fracture energy properties, and/or testing the emulsified bituminous binder residuum for fracture energy and selecting the emulsified bituminous binder for use in the crack resistant layer based on mixture fracture energy properties and bituminous binder fracture residuum energy properties.
摘要:
A method of selecting a crack resistant layer to be applied to an existing surface, the method comprising the steps of: selecting at least one bituminous binder to examine, where the bituminous binder comprises bitumen and one or more polymers, where the one or more polymers include a sufficient amount of conjugated diene such that at least 2.5% of the bituminous binder's weight comprises conjugated diene, preferably at least 3.0%, more preferably at least 3.5%, and most preferably 4.0%; forming at least one bituminous mixture comprising the bituminous binder and an aggregate; testing each bituminous mixture for mixture fracture energy properties; and selecting a bituminous binder for use in the crack resistant layer. The method may further comprise the steps of testing the bituminous mixture for fatigue properties and selecting the bituminous binder for use in the crack resistant layer based on fatigue properties and mixture fracture energy properties, and/or testing the bituminous binder for fracture energy and selecting the bituminous binder for use in the crack resistant layer based on mixture fracture energy properties and bituminous binder fracture energy properties.
摘要:
A method of making a polymer-binder composite, and the composite thus created. The method employs a high shear device that mixes together polymer with binder, and optionally with additive. The mixing is accomplished in less than one hour, less than 30 minutes or less than 3 minutes, and done at high shear rates. The shear conditions are defined by scalar shear quantity greater than 250, 1,000 or 1,500, resident time of greater than 0.05, 0.10 or 0.20 seconds, and energy utilized per unit mass of greater than 0.05, 0.10 or 0.20 kW/kg. The composite thus produced can be made with a high percentage of polymers. It can be cooled and cut into pellets that are dry and stable at normal temperatures and which can be stored or transported without heating to secondary mixing locations. The composite pellets are quickly soluble in the additional binder.