Abstract:
According to the invention a well-switching arrangement, with a semiconductor circuit including a switch having an input terminal, an output terminal and a body region and at least one comparator having a first input coupled to at least one of the terminals and a second input coupled to a positive voltage rail, and logic coupled to an output of the comparator and responsive to the output to selectively couple the body-well region to one of the terminals or to the positive voltage rail.
Abstract:
A circuit for regulating the gain of a variable differential gain amplifier. In one embodiment, a fully differential amplifier amplifies the outputs of the variable gain amplifier. The outputs of the fully differential amplifier are applied to a three input comparator so that if either of the outputs are greater than a reference voltage, a control signal is generated which is used to regulate the gain of the variable gain amplifier. In other embodiments, an analog OR function is used as an input to a conventional two input comparator in place of the three input comparator. In another embodiment, outputs of the variable gain amplifier are passed through switches to a scaling circuit which either voltage divides or amplifies and combines the outputs before application to a comparator. In each case, known asymmetries can be compensated for by independent gain control of each of the outputs of the variable gain differential amplifier.
Abstract:
An integrated circuit includes storage circuits comprising isolation transistors to which a certain bias voltage may be applied. The bias voltage is generated by a bias voltage generator. A boost circuit responds to initial bias voltage transition by generating a boost current that is applied to the isolation transistors with the transitioning bias voltage.
Abstract:
A device and method for selecting within a group of analog signals the one with the lowest or with the highest value. In one embodiment the device has a differential amplifier configuration having an input to receive a comparison signal, a plurality of inputs to receive analog signals and a corresponding plurality of outputs to provide digital voltage signals. This device also has at least one logic circuit having a plurality of input terminals, each connected to a corresponding output of the differential amplifier configuration, and having at least one output terminal.
Abstract:
The present invention relates to a signal driver circuit for driving a liquid crystal display panel. The signal driver circuit provides level shifting within the circuit to lower the power consumption of a liquid crystal display module while still providing a wide analog voltage range to the liquid crystal display elements. The decoding circuits utilize a strand of abutting decode input transistors which are connected in series. Further to reduce the physical size of the decoding circuits, multiple decode circuits may share circuitry that decodes the most significant bits of a data word. A cell layout is utilized such that the most significant bits data are bused into the cell through metal lines and the least significant bits are bused in polysilicon that also operates as the gate of the decode input transistors. Moreover, the decode cell input transistors may all be of the same conductivity type.
Abstract:
A dual-tone multiple frequency signal generator is provided for use with telecommunications systems, data transfer systems and other applications. The tone encoding system utilizes MOS/LSI integrated circuitry on a single chip powered directly by telephone line voltages. An electronic keyboard circuit provides synchronized pulses to decode single-pole, single-throw keyboard switches by row and column. A crystal-controlled oscillator generates a reference frequency which is divided according to the row and column of an activated keyboard switch to obtain two pulse signals having frequencies representative of the activated switch. The outputs of the divider circuitry are fed to a programmed logic array which generates two digitally coded signals each representing a sinusoidal waveform. A digital-to-analog ladder network converts the digitally coded signals to continuous sine waves, and an operational amplifier combines the sinusoidal waveforms to provide a dual-tone output. The integrated circuitry also utilizes electronic switches for the common functions of tone transmission, including applying power to the oscillator, disconnecting the audio transmitter and attenuating the input to the receiver. Complementary-symmetry, metal-oxide semi-conductor elements implement the circuitry design with bi-polar transistors on the same chip performing some of the common function switching.
Abstract:
A servo control circuit provides seamless transition between seek and track modes while enabling both rapid seek mode operation and accurate tracking. The control circuit includes an analog-to-digital converter having a non-linear characteristic. The non-linear characteristic provides disproportionately large control voltages to derive speed and settling in the seek mode and essentially linear control voltages in the track mode to provide low noise and accurate tracking operation.
Abstract:
Methods and structures for ensuring the highly linear discharge of a capacitor used for slew rate control of a power driving stage from a maximum voltage to a minimum supply voltage, such as ground. A voltage ramp generator uses a single cascoded current source to achieve the linear ramp-down.
Abstract:
A circuit for regulating the gain of a variable differential gain amplifier. In one embodiment, a fully differential amplifier amplifies the outputs of the variable gain amplifier. The outputs of the fully differential amplifier are applied to a three input comparator so that if either of the outputs are greater than a reference voltage, a control signal is generated which is used to regulate the gain of the variable gain amplifier. In other embodiments, an analog OR function is used as an input to a conventional two input comparator in place of the three input comparator. In another embodiment, outputs of the variable gain amplifier are passed through switches to a scaling circuit which either voltage divides or amplifies and combines the outputs before application to a comparator. In each case, known asymmetries can be compensated for by independent gain control of each of the outputs of the variable gain differential amplifier.
Abstract:
A high-gain comparator has a built-in hysteresis offset voltage generation feature. The comparator is characterized as having several elements, including a differential amplifier pair that is provided with first and second input voltages, an offset voltage element that creates an offset voltage between the first and second elements of the differential amplifier pair, an output generation element operably coupled to the differential amplifier pair that generates an output voltage of the comparator which is indicative of a voltage difference between the first and second input voltages, and a control element operably coupled to the output signal that controllably adjusts the offset voltage from a first state to a second state in accordance with the output signal to create a hysteresis condition of the comparator.