Abstract:
A finger jointed floorboard or laminatable floorboard section of two connected shorter pieces includes a relatively thick upper wear region which may be sanded without exposing the fingers forming the connection, regardless of whether or not the pieces are connected in the same longitudinal and transverse horizontal planes. The structure and orientation of this finger joint allows flooring manufacturers to maximize the yield of typically solid, good quality floorboard material and to reduce installation costs, without adversely affecting the aesthetic quality of the installed floor. In one embodiment, a finger jointed board with a central finger joint is sawed in a horizontal plane through the joint to produce two identical, laminatable floorboard sections. With a thicker starting board having two separate, spaced finger joint connections, sawing along a horizontal midplane produces two identical intermediate boards, each with a centrally located finger joint. Each intermediate board is then sawed through the finger joint connection to produce a total of four laminatable floorboard sections.
Abstract:
An insert and set screw for locking together the tongue and groove elements of adjacently situated sections of a portable floor in a manner which prevents upward movement of both the set screw and the insert beyond the top surface of the floor. The insert has a flared bottom end that is located in a floor section, above a groove in the groove element, and the set screw is threadably received within the insert. The set screw is tightened downwardly to contact and then compress upon a tongue element of an adjacently situated floor section that has been inserted within the groove element, thereby locking the tongue and groove elements together. The flared bottom end of the insert prevents it from moving upwardly into the plane of the top surface. Stop means inside the insert limit upward movement of the set screw. Both the insert and the set screw are physically restricted from protruding above the top floor surface.
Abstract:
An athletic floor uses a panel-type subfloor to secure directly to a concrete base. The panel-type sections include upper and lower rigid layers which sandwich a resilient layer. The rigidity of the lower layer spans most uneven spots in the floor, while the resilient layer provides some degree of a compressibility and/or conformability, as needed, to provide a flat horizontal surface for supporting a layer of floorboards thereabove. The panel sections can be secured directly to the base, via anchors which secure the lower rigid layers to the base, the anchors residing in access openings formed along the perimeter of the upper rigid layer and in the resilient layer. This anchoring arrangement enables each anchor to hold at least two adjacently located panel sections, and it also eliminates precompression of the resilient layer. The subfloor panel sections are prefabricated, at the factory, and then shipped to the installation site. Overall, a subfloor of panel-type sections of this type provides a high degree of stability, resiliency, and uniformity in these parameters, with simpler and lower cost installation.
Abstract:
An anchored/resilient floor system includes at least one upper flooring layer supported by parallel rows of attachment members which are supported above a base by a plurality of compressible pads, the attachment members being secured to the base at predetermined positions therealong by a fastener construction which permits downward deflection under loaded conditions but prevents vertical raising of the members beyond their initial static position. The attachment members are anchored in a manner which does not hold the pads in a precompressed state when the floor is unloaded. The fastener construction may include a one, two or three piece construction. The single member fastener construction is particularly suitable for reanchoring or retrofitting an already installed floor at a significantly lower cost than that of installing a new floor, and the one-piece fastener construction also may be adapted for use with a portable floor.
Abstract:
A prefabricated sleeper reduces labor costs associated with installing an anchored, resilient hardwood floor system. The prefabricated sleeper includes an elongated channel, pads located along the channel and an elongated nailing strip supported on the pads within the channel. A plurality of vertical access holes extend through the nailing strip. The pads are removed laterally from the access holes. The access holes enable a fastening gun to be inserted therein and into direct contact with the bottom of the channel to facilitate driving of fasteners through the bottom of the channel and directly into a base below. This prefabricated sleeper is formed by milling an elongated wooden strip to a desired T-shape and then drilling access holes therethrough. Pads are then stapled to the enlarged end of the T-shape, away from the access holes. An elongated sheet of steel is then rolled around the pads and the sides of the nailing strip to form a C-shaped channel thereabout.
Abstract:
A hardwood floor system has upper and lower subfloors of wooden panels, a plurality of elongated floorboards disposed above the upper subfloor and a plurality of uniformly spaced compressible, deflectable pads supporting the lower subfloor above a base, with at least one kerfed surface in the group of surfaces including the floorboard bottom surface, the upper subfloor surfaces, and the lower subfloor surfaces. In a free-floating embodiment of the invention, each of the pads includes a glide tip that is slidable with respect to the base. This combination of kerfs and compressible, deflectable pads provides a hardwood floor system that substantially complies with the performance characteristics established by the Otto Graf Institut of West Germany for evaluating hardwood floor systems, but in a more economical manner than another embodiment of the invention described in the parent application.
Abstract:
A hardwood, free floating floor system has upper and lower subfloors of wooden panels with criss-cross kerf patterns formed in either their top or bottom surfaces, a plurality of elongated floorboards disposed above the upper subfloor, the floorboards having transverse kerfs cut in their bottom surfaces, and a plurality of uniformly spaced pads supporting the lower subfloor above a base. The combination of the subfloor kerf patterns, the floorboard kerfs, and the compressible, deflectable pads provides a free floating hardwood floor system which meets the difficult standards established by the Otto Graf Institut of West Germany for assessing a floor's ability to reduce injury and to provide highly consistent performance characteristics.
Abstract:
A free floating hard wood floor system has upper and lower subfloors sandwiched to provide a monolithic panel system which supports the floorboards with optimum rigidity and integrity at a reduced cost. The upper subfloor has grooves milled in the bottom surface with flat clinching strips received within the grooves. The floorboards are disposed above the upper subfloor and secured thereto by a plurality of clinching nails extending through the florboards, the upper subfloor and into the upper subfloor after deflecting on said clinching strips.