Abstract:
A method determines a nonlinearity profile of a material. The method includes providing a magnitude of a Fourier transform of a measured nonlinearity profile measured from the material. The method further includes providing an estimated phase term of the Fourier transform of the measured nonlinearity profile. The method further includes multiplying the magnitude and the estimated phase term to generate an estimated Fourier transform. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform. The method further includes calculating a real component of the inverse Fourier transform to generate an estimated nonlinearity profile.
Abstract:
Coupling of core modes to surface modes in an air-core photonic-bandgap fiber (PBF) can cause large propagation losses. Computer simulations analyze the relationship between the geometry and the presence of surface modes in PBFs having a triangular hole pattern and identify ranges of core characteristic dimensions (e.g., radii) for which the fiber supports no surface modes (i.e., only core modes are present) over the entire wavelength range of the bandgap. In particular, for a hole spacing Λ and a hole radius ρ=0.47Λ, the core supports a single mode and supports no surface modes for core radii between about 0.7Λ and about 1.05Λ, which suggests that such fibers should exhibit a very low propagation loss. The existence of surface modes can be predicted simply and expediently by studying either the bulk modes alone or the geometry of the fiber without requiring a full analysis of the defect modes.
Abstract:
Photodarkening in active fiber or waveguide devices (e.g. lasers, amplifiers, and incoherent sources such as ASE sources) can be reduced by altering the dopant concentration along the length of the doped fiber. A fiber or waveguide device includes two or more intentionally doped fiber or waveguide sections having different concentrations of one or more dopants. The dopants provide optical gain responsive to pump radiation provided to the fiber device by a pump source. A first optical intensity in a first of the fiber or waveguide sections is greater than a second optical intensity in a second of the fiber or waveguide sections. A first dopant concentration in the first fiber or waveguide section is lower than a second dopant concentration in the second fiber or waveguide section. Thus the dopant concentration is reduced in sections of the fiber or waveguide device having a higher optical intensity. The optical intensity can be due to pump radiation and/or signal radiation. Reduced dopant concentration in regions of high optical intensity reduces photodarkening.
Abstract:
A polarization controller is provided. The polarization controller includes a hollow-core photonic-bandgap fiber, wherein at least a portion of the hollow-core photonic-bandgap fiber has a longitudinal axis and is twisted about the longitudinal axis.
Abstract:
A photonic-bandgap fiber includes a photonic crystal lattice with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The photonic-bandgap fiber further includes a core and a core ring surrounding the core and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
Abstract:
A method and apparatus models one or more electromagnetic field modes of a waveguide. The method includes sampling a two-dimensional cross-section of the waveguide. The method further includes calculating a first matrix having a plurality of elements and having a first bandwidth using the sampled two-dimensional cross-section of the waveguide. The plurality of elements of the first matrix represents an action of Maxwell's equations on a transverse magnetic field within the waveguide. The method further includes rearranging the plurality of elements of the first matrix to form a second matrix having a second bandwidth smaller than the first bandwidth. The method further includes shifting the second matrix and inverting the shifted second matrix to form a third matrix. The method further includes calculating one or more eigenvalues or eigenvectors of the third matrix corresponding to one or more modes of the waveguide.
Abstract:
An optical sensor includes a directional coupler comprising at least a first port, a second port, and a third port. The first port is in optical communication with the second port and with the third port such that a first optical signal received by the first port is split into a second optical signal that propagates to the second port and a third optical signal that propagates to the third port. The optical sensor further includes a photonic bandgap fiber having a hollow core and an inner cladding generally surrounding the core. The photonic bandgap fiber is in optical communication with the second port and with the third port. The second optical signal and the third optical signal counterpropagate through the photonic bandgap fiber and return to the third port and the second port, respectively. The photonic bandgap fiber has a phase thermal constant S less than 8 parts-per-million per degree Celsius.
Abstract:
An optical coupler includes a first optical port, a second optical port, a third optical port, and a fourth optical port. The optical coupler further includes a photonic-bandgap fiber having a cladding, a first core, and a second core. The cladding includes a material with a first refractive index and regions within the cladding. The regions have a second refractive index lower than the first refractive index. The first core is substantially surrounded by the cladding. The first core is optically coupled to the first optical port and to the second optical port. The second core is substantially surrounded by the cladding. The second core is optically coupled to the third optical port and to the fourth optical port. At least a portion of the first core is generally parallel to and spaced from at least a portion of the second core such that the first core is optically coupled to the second core. The first core, the second core, or both the first core and the second core is hollow.
Abstract:
An acoustic sensor includes at least one photonic crystal structure having at least one optical resonance with a resonance frequency and a resonance lineshape. The acoustic sensor further includes a housing substantially surrounding the at least one photonic crystal structure and mechanically coupled to the at least one photonic crystal structure. At least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the housing.
Abstract:
An optical fiber includes a cladding with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The optical fiber further includes a core region and a core ring surrounding the core region and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.