Method for configuring air-core photonic-bandgap fibers free of surface modes
    2.
    发明申请
    Method for configuring air-core photonic-bandgap fibers free of surface modes 有权
    用于配置不含表面模式的空芯光子带隙光纤的方法

    公开(公告)号:US20050118420A1

    公开(公告)日:2005-06-02

    申请号:US10938755

    申请日:2004-09-10

    Abstract: Coupling of core modes to surface modes in an air-core photonic-bandgap fiber (PBF) can cause large propagation losses. Computer simulations analyze the relationship between the geometry and the presence of surface modes in PBFs having a triangular hole pattern and identify ranges of core characteristic dimensions (e.g., radii) for which the fiber supports no surface modes (i.e., only core modes are present) over the entire wavelength range of the bandgap. In particular, for a hole spacing Λ and a hole radius ρ=0.47Λ, the core supports a single mode and supports no surface modes for core radii between about 0.7Λ and about 1.05Λ, which suggests that such fibers should exhibit a very low propagation loss. The existence of surface modes can be predicted simply and expediently by studying either the bulk modes alone or the geometry of the fiber without requiring a full analysis of the defect modes.

    Abstract translation: 核心模式与空芯光子带隙光纤(PBF)中的表面模式的耦合可能导致较大的传播损耗。 计算机模拟分析了具有三角孔图案的PBF中的几何形状和表面模式的存在之间的关系,并且识别纤维不支持表面模式(即,仅存在核心模式)的核心特征尺寸(例如,半径)的范围, 在带隙的整个波长范围内。 特别地,对于孔间距λ和孔半径rho = 0.47Lambda,芯支撑单模并且不支持在约0.7λ和约1.05λ之间的核心半径的表面模式,这表明这种光纤应呈现非常低的 传播损失。 表面模式的存在可以通过单独研究单独的体模式或光纤的几何形状而不需要对缺陷模式进行全面分析来简单和方便地预测。

    PHOTONIC-BANDGAP FIBER WITH A CORE RING
    3.
    发明申请
    PHOTONIC-BANDGAP FIBER WITH A CORE RING 有权
    带核心环的光子带光纤

    公开(公告)号:US20070189686A1

    公开(公告)日:2007-08-16

    申请号:US11737683

    申请日:2007-04-19

    CPC classification number: G02B6/02328 G02B6/02338 G02B6/02347

    Abstract: A photonic-bandgap fiber includes a photonic crystal lattice with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The photonic-bandgap fiber further includes a core and a core ring surrounding the core and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.

    Abstract translation: 光子带隙光纤包括具有第一折射率的材料和形成在其中的区域的图案的光子晶格。 每个区域具有低于第一折射率的第二折射率。 光子带隙光纤还包括芯部和围绕芯部的芯环,并且具有内周边,外周边和内周边与外周边之间的厚度。 厚度的大小可以减小由芯环支撑的环表面模式的数量。

    OPTICAL FIBER WITH A CORE RING
    4.
    发明申请
    OPTICAL FIBER WITH A CORE RING 有权
    带光环的光纤

    公开(公告)号:US20080112678A1

    公开(公告)日:2008-05-15

    申请号:US11971181

    申请日:2008-01-08

    CPC classification number: G02B6/02328 G02B6/02338 G02B6/02347

    Abstract: An optical fiber includes a cladding with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The optical fiber further includes a core region and a core ring surrounding the core region and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.

    Abstract translation: 光纤包括具有第一折射率的材料和其中形成的区域的图案的包层。 每个区域具有低于第一折射率的第二折射率。 光纤还包括芯区域和围绕芯区域的芯环,并且具有内周边,外周边和内周边与外周边之间的厚度。 厚度的大小可以减小由芯环支撑的环表面模式的数量。

    Photonic-bandgap fiber with a core ring
    5.
    发明申请
    Photonic-bandgap fiber with a core ring 有权
    带有核心环的光子带隙光纤

    公开(公告)号:US20050281522A1

    公开(公告)日:2005-12-22

    申请号:US11123879

    申请日:2005-05-06

    CPC classification number: G02B6/02328 G02B6/02338 G02B6/02347

    Abstract: A photonic-bandgap fiber includes a photonic crystal lattice with a first material having a first refractive index and a pattern of a second material formed therein. The second material has a second refractive index lower than the first refractive index. The photonic crystal lattice has a plurality of first regions that support intensity lobes of the highest frequency bulk mode and has a plurality of second regions that do not support intensity lobes of the highest frequency bulk mode. The photonic-bandgap fiber further includes a central core formed in the photonic crystal lattice. The photonic-bandgap fiber further includes a core ring having an outer perimeter. The core ring surrounds the central core, wherein the outer perimeter of the core ring passes only through the second regions of the photonic crystal lattice.

    Abstract translation: 光子带隙光纤包括具有第一材料的光子晶格,其具有第一折射率和在其中形成的第二材料的图案。 第二材料具有比第一折射率低的第二折射率。 光子晶格具有多个第一区域,其支持最高频率体模式的强度波瓣,并且具有不支持最高频率体模式的强度波瓣的多个第二区域。 光子带隙光纤还包括形成在光子晶格中的中心核心。 光子带隙光纤还包括具有外周边的芯环。 芯环围绕中心芯,其中芯环的外周仅穿过光子晶格的第二区。

    METHOD FOR ESTIMATING THE OPTICAL NONLINEARITY OF A MATERIAL
    6.
    发明申请
    METHOD FOR ESTIMATING THE OPTICAL NONLINEARITY OF A MATERIAL 有权
    估算材料光学非线性的方法

    公开(公告)号:US20070282569A1

    公开(公告)日:2007-12-06

    申请号:US11841587

    申请日:2007-08-20

    CPC classification number: G01N21/636

    Abstract: A method estimates a nonlinearity profile of a material. The method includes providing a magnitude of a transform of a measured nonlinearity profile measured from the material. The method further includes providing an estimated phase term of the transform of the measured nonlinearity profile. The method further includes multiplying the magnitude and the estimated phase term to generate an estimated transform. The method further includes calculating an inverse transform of the estimated transform. The method further includes calculating a real component of the inverse transform to generate an estimated nonlinearity profile.

    Abstract translation: 方法估计材料的非线性轮廓。 该方法包括提供从材料测量的测量的非线性轮廓的变换幅度。 该方法还包括提供测量的非线性分布的变换的估计相位项。 该方法还包括乘以幅度和估计的相位项以产生估计变换。 该方法还包括计算估计变换的逆变换。 该方法还包括计算逆变换的实数分量以生成估计的非线性分布。

    Method of retrieving phase and magnitude of weak ultra-short optical pulses using a stronger unknown pulse
    7.
    发明申请
    Method of retrieving phase and magnitude of weak ultra-short optical pulses using a stronger unknown pulse 有权
    使用更强的未知脉冲检索弱超短脉冲的相位和幅度的方法

    公开(公告)号:US20070055466A1

    公开(公告)日:2007-03-08

    申请号:US11384230

    申请日:2006-03-17

    CPC classification number: G04F13/02 G01J11/00

    Abstract: A method determines a complex electric field temporal profile of an optical pulse. The method includes providing a measured magnitude of the Fourier transform of a complex electric field temporal profile of a pulse sequence comprising the optical pulse and a dummy pulse. The method further includes providing an estimated phase term of the Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes multiplying the measured magnitude and the estimated phase term to generate an estimated Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform, wherein the inverse Fourier transform is a function of time. The method further includes calculating an estimated complex electric field temporal profile of the pulse sequence by applying at least one constraint to the inverse Fourier transform.

    Abstract translation: 一种方法确定光脉冲的复电场时间曲线。 该方法包括提供包括光脉冲和伪脉冲的脉冲序列的复电场时间分布的傅里叶变换的测量幅度。 该方法还包括提供脉冲序列的复电场时间分布的傅立叶变换的估计相位项。 该方法还包括乘以测量的幅度和估计的相位项以产生脉冲序列的复电场时间曲线的估计傅立叶变换。 该方法还包括计算傅立叶逆变换的傅立叶逆变换,其中逆傅里叶变换是时间的函数。 该方法还包括通过对傅里叶逆变换应用至少一个约束来计算脉冲序列的估计复电场时间分布。

    Method for determining the optical nonlinearity profile of a material
    8.
    发明申请
    Method for determining the optical nonlinearity profile of a material 有权
    用于确定材料的光学非线性轮廓的方法

    公开(公告)号:US20050111002A1

    公开(公告)日:2005-05-26

    申请号:US10996166

    申请日:2004-11-23

    CPC classification number: G01N21/636

    Abstract: A method determines a nonlinearity profile of a material. The method includes providing a magnitude of a Fourier transform of a measured nonlinearity profile measured from the material. The method further includes providing an estimated phase term of the Fourier transform of the measured nonlinearity profile. The method further includes multiplying the magnitude and the estimated phase term to generate an estimated Fourier transform. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform. The method further includes calculating a real component of the inverse Fourier transform to generate an estimated nonlinearity profile.

    Abstract translation: 一种方法确定材料的非线性轮廓。 该方法包括提供从材料测量的测量的非线性轮廓的傅里叶变换的幅度。 该方法还包括提供所测量的非线性分布的傅里叶变换的估计相位项。 该方法还包括将幅度和估计相位项相乘以产生估计的傅里叶变换。 该方法还包括计算估计的傅立叶变换的傅立叶逆变换。 该方法还包括计算逆傅里叶变换的实分量以产生估计的非线性分布。

    Mitigation of photodarkening to achieve laser oscillation and amplification with highly doped fibers
    9.
    发明申请
    Mitigation of photodarkening to achieve laser oscillation and amplification with highly doped fibers 失效
    减轻光暗化实现激光振荡和高掺杂光纤放大

    公开(公告)号:US20070053400A1

    公开(公告)日:2007-03-08

    申请号:US11508550

    申请日:2006-08-22

    Abstract: Photodarkening in active fiber or waveguide devices (e.g. lasers, amplifiers, and incoherent sources such as ASE sources) can be reduced by altering the dopant concentration along the length of the doped fiber. A fiber or waveguide device includes two or more intentionally doped fiber or waveguide sections having different concentrations of one or more dopants. The dopants provide optical gain responsive to pump radiation provided to the fiber device by a pump source. A first optical intensity in a first of the fiber or waveguide sections is greater than a second optical intensity in a second of the fiber or waveguide sections. A first dopant concentration in the first fiber or waveguide section is lower than a second dopant concentration in the second fiber or waveguide section. Thus the dopant concentration is reduced in sections of the fiber or waveguide device having a higher optical intensity. The optical intensity can be due to pump radiation and/or signal radiation. Reduced dopant concentration in regions of high optical intensity reduces photodarkening.

    Abstract translation: 通过改变沿着掺杂光纤的长度的掺杂剂浓度,可以减少有源光纤或波导器件(例如,激光器,放大器和非相干源,例如ASE源)中的光标。 光纤或波导器件包括具有不同浓度的一种或多种掺杂剂的两个或更多个有意掺杂的光纤或波导部分。 掺杂剂通过泵浦源提供响应于提供给光纤装置的泵浦辐射的光学增益。 第一光纤或波导部分中的第一光强度大于第二光纤或波导部分中的第二光强度。 第一光纤或波导部分中的第一掺杂剂浓度低于第二光纤或波导部分中的第二掺杂剂浓度。 因此,具有较高光强度的光纤或波导器件的部分的掺杂剂浓度降低。 光强度可能是由于泵浦辐射和/或信号辐射。 高光强度区域的掺杂剂浓度降低会降低光暗化。

    Femtosecond spectroscopy using minimum phase functions
    10.
    发明申请
    Femtosecond spectroscopy using minimum phase functions 有权
    飞秒光谱使用最小相位函数

    公开(公告)号:US20070027689A1

    公开(公告)日:2007-02-01

    申请号:US11396931

    申请日:2006-04-03

    CPC classification number: G01J11/00 G04F13/02

    Abstract: A method determines a transient response of a sample. The method includes providing a measured magnitude of the Fourier transform of a complex electric field temporal profile of a pulse sequence comprising a probe pulse and a dummy pulse, wherein the probe pulse is indicative of the transient response of the sample. The method further includes providing an estimated phase term of the Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes multiplying the measured magnitude and the estimated phase term to generate an estimated Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform, wherein the inverse Fourier transform is a function of time. The method further includes calculating an estimated complex electric field temporal profile of the pulse sequence by applying at least one constraint to the inverse Fourier transform.

    Abstract translation: 一种方法确定样品的瞬态响应。 该方法包括提供包括探针脉冲和伪脉冲的脉冲序列的复电场时间分布的傅立叶变换的测量幅度,其中探针脉冲表示样品的瞬态响应。 该方法还包括提供脉冲序列的复电场时间分布的傅立叶变换的估计相位项。 该方法还包括乘以测量的幅度和估计的相位项以产生脉冲序列的复电场时间曲线的估计傅立叶变换。 该方法还包括计算傅立叶逆变换的傅立叶逆变换,其中逆傅里叶变换是时间的函数。 该方法还包括通过对傅里叶逆变换应用至少一个约束来计算脉冲序列的估计复电场时间分布。

Patent Agency Ranking