Abstract:
A polarization controller is provided. The polarization controller includes a hollow-core photonic-bandgap fiber, wherein at least a portion of the hollow-core photonic-bandgap fiber has a longitudinal axis and is twisted about the longitudinal axis.
Abstract:
Coupling of core modes to surface modes in an air-core photonic-bandgap fiber (PBF) can cause large propagation losses. Computer simulations analyze the relationship between the geometry and the presence of surface modes in PBFs having a triangular hole pattern and identify ranges of core characteristic dimensions (e.g., radii) for which the fiber supports no surface modes (i.e., only core modes are present) over the entire wavelength range of the bandgap. In particular, for a hole spacing Λ and a hole radius ρ=0.47Λ, the core supports a single mode and supports no surface modes for core radii between about 0.7Λ and about 1.05Λ, which suggests that such fibers should exhibit a very low propagation loss. The existence of surface modes can be predicted simply and expediently by studying either the bulk modes alone or the geometry of the fiber without requiring a full analysis of the defect modes.
Abstract:
A photonic-bandgap fiber includes a photonic crystal lattice with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The photonic-bandgap fiber further includes a core and a core ring surrounding the core and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
Abstract:
An optical fiber includes a cladding with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The optical fiber further includes a core region and a core ring surrounding the core region and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
Abstract:
A photonic-bandgap fiber includes a photonic crystal lattice with a first material having a first refractive index and a pattern of a second material formed therein. The second material has a second refractive index lower than the first refractive index. The photonic crystal lattice has a plurality of first regions that support intensity lobes of the highest frequency bulk mode and has a plurality of second regions that do not support intensity lobes of the highest frequency bulk mode. The photonic-bandgap fiber further includes a central core formed in the photonic crystal lattice. The photonic-bandgap fiber further includes a core ring having an outer perimeter. The core ring surrounds the central core, wherein the outer perimeter of the core ring passes only through the second regions of the photonic crystal lattice.
Abstract:
A method estimates a nonlinearity profile of a material. The method includes providing a magnitude of a transform of a measured nonlinearity profile measured from the material. The method further includes providing an estimated phase term of the transform of the measured nonlinearity profile. The method further includes multiplying the magnitude and the estimated phase term to generate an estimated transform. The method further includes calculating an inverse transform of the estimated transform. The method further includes calculating a real component of the inverse transform to generate an estimated nonlinearity profile.
Abstract:
A method determines a complex electric field temporal profile of an optical pulse. The method includes providing a measured magnitude of the Fourier transform of a complex electric field temporal profile of a pulse sequence comprising the optical pulse and a dummy pulse. The method further includes providing an estimated phase term of the Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes multiplying the measured magnitude and the estimated phase term to generate an estimated Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform, wherein the inverse Fourier transform is a function of time. The method further includes calculating an estimated complex electric field temporal profile of the pulse sequence by applying at least one constraint to the inverse Fourier transform.
Abstract:
A method determines a nonlinearity profile of a material. The method includes providing a magnitude of a Fourier transform of a measured nonlinearity profile measured from the material. The method further includes providing an estimated phase term of the Fourier transform of the measured nonlinearity profile. The method further includes multiplying the magnitude and the estimated phase term to generate an estimated Fourier transform. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform. The method further includes calculating a real component of the inverse Fourier transform to generate an estimated nonlinearity profile.
Abstract:
Photodarkening in active fiber or waveguide devices (e.g. lasers, amplifiers, and incoherent sources such as ASE sources) can be reduced by altering the dopant concentration along the length of the doped fiber. A fiber or waveguide device includes two or more intentionally doped fiber or waveguide sections having different concentrations of one or more dopants. The dopants provide optical gain responsive to pump radiation provided to the fiber device by a pump source. A first optical intensity in a first of the fiber or waveguide sections is greater than a second optical intensity in a second of the fiber or waveguide sections. A first dopant concentration in the first fiber or waveguide section is lower than a second dopant concentration in the second fiber or waveguide section. Thus the dopant concentration is reduced in sections of the fiber or waveguide device having a higher optical intensity. The optical intensity can be due to pump radiation and/or signal radiation. Reduced dopant concentration in regions of high optical intensity reduces photodarkening.
Abstract:
A method determines a transient response of a sample. The method includes providing a measured magnitude of the Fourier transform of a complex electric field temporal profile of a pulse sequence comprising a probe pulse and a dummy pulse, wherein the probe pulse is indicative of the transient response of the sample. The method further includes providing an estimated phase term of the Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes multiplying the measured magnitude and the estimated phase term to generate an estimated Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform, wherein the inverse Fourier transform is a function of time. The method further includes calculating an estimated complex electric field temporal profile of the pulse sequence by applying at least one constraint to the inverse Fourier transform.