Abstract:
The present invention has an object to provide a negative electrode carbon material capable of providing a lithium secondary battery improved in the capacity characteristic, and a negative electrode for a lithium secondary battery and a lithium secondary battery using the negative electrode carbon material. The negative electrode carbon material for a lithium secondary battery according to the present invention comprises an oxidized amorphous carbon material comprising oxidized graphene layers. The oxidized amorphous carbon material can be obtained by subjecting an amorphous carbon to an oxidation treatment so that graphene layers of carbon crystallites contained in the amorphous carbon are oxidized.
Abstract:
A porous graphene material with 1 to 200 graphene layers, wherein: at least one monolayer graphene is included; pores with the size of 70 nm to 200 nm are scattered over the surface of the material and the number of pores is 10 to 500 per μm2; an oxygen concentration is below 0.8 atomic %; and the ratio of the peak height (ID) of D band in a Raman scattering spectrum of the material to that of the peak height (IG) of G band at 1,570 to 1,596 cm−1 in the spectrum (ID/IG) is between 1 and 1.35. The porous graphene material is suitable for conductive additives for electrodes of Lithium ion battery.
Abstract:
The present invention provides a novel carbon material comprising a three-dimensional graphene network constituting a plurality of cells interconnecting as a whole, where at least one of the cells has single-layer graphene wall. The carbon material is suitable for a lithium ion battery.
Abstract:
A negative electrode for a lithium ion secondary battery, including a negative electrode active material layer containing a negative electrode active material including silicon (Si) as a constituent element, in which a coating including iron (Fe), manganese (Mn) and oxygen (O) as constituent elements is formed on a surface of the negative electrode active material layer.
Abstract:
There is provided a negative electrode carbon material for a lithium secondary battery, including a graphite-based material in which holes are formed in a graphene layer plane.
Abstract:
The present invention provides an anode material for a lithium-ion battery comprising a carbon particle having a particle size of 5 μm to 30 μm, and including defective portions on a surface of the carbon particle, the defective portions being grooves formed by cathodically exfoliating graphene layers from the carbon particle.