Abstract:
A computer-implemented method for employing input-conditioned filters to perform natural language processing tasks using a convolutional neural network architecture includes receiving one or more inputs, generating one or more sets of filters conditioned on respective ones of the one or more inputs by implementing one or more encoders to encode the one or more inputs into one or more respective hidden vectors, and implementing one or more decoders to determine the one or more sets of filters based on the one or more hidden vectors, and performing adaptive convolution by applying the one or more sets of filters to respective ones of the one or more inputs to generate one or more representations.
Abstract:
A context-aware attention-based neural network is provided for answering an input question given a set of purportedly supporting statements for the input question. The neural network includes a processing element. The processing element is configured to calculate a question representation for the input question, based on word annotations and word-level attentions calculated for the input question. The processing element is further configured to calculate a sentence representation for each of the purportedly supporting statements, based on word annotations and word-level attentions calculated for each of the purportedly supporting statements. The processing element is also configured to calculate a context representation for the set of purportedly supporting statements with respect to the sentence representation for each of the purportedly supporting statements. The processing element is additionally configured to generate an answer to the input question based on the question representation and the context representation.
Abstract:
A system and method are provided for deep high-order exemplar learning of a data set. Feature vectors and class labels are received. Each of the feature vectors represents a respective one of a plurality of high-dimensional data points of the data set. The class labels represent classes for the high-dimensional data points. Each of the feature vectors are processed, using a deep high-order convolutional neural network, to obtain respective low-dimensional embedding vectors within each class. A minimization operation is performed on high-order embedding parameters of the high-dimensional data points to output a set of synthetic exemplars. A binarizing operation is performed on the low-dimensional embedding vectors and the set of synthetic exemplars to output hash codes representing the data set. The hash codes are utilized as a search key to increase the efficiency of a processor-based machine searching the data set.
Abstract:
A method, a computer program product, and a system are provided for video based action recognition. The system includes a processor. One or more frames from one or more video sequences are received. A feature vector for each patch of the one w more frames is generated using a deep convolutional neural network. An attention factor for the feature vectors is generated based on a within-frame attention and a between-frame attention. A target action is identified using a multi-layer deep long short-term memory process applied to the attention factor, said target action representing at least one of the one or more video sequences. An operation of a processor-based machine is controlled to change a state of the processor-based machine, responsive to the at least one of the one or more video sequences including the identified target action
Abstract:
Methods for system failure prediction include clustering log files according to structural log patterns. Feature representations of the log files are determined based on the log clusters. A likelihood of a system failure is determined based on the feature representations using a neural network. An automatic system control action is performed if the likelihood of system failure exceeds a threshold.
Abstract:
A video camera is provided for video-based anomaly detection that includes at least one imaging sensor configured to capture video sequences in a workplace environment having a plurality of machines therein. The video camera further includes a processor. The processor is configured to generate one or more predictions of an impending anomaly affecting at least one item selected from the group consisting of (i) at least one of the plurality of machines and (ii) at least one operator of the at least one of the plurality of machines, using a Deep High-Order Convolutional Neural Network (DHOCNN)-based model applied to the video sequences. The DHOCNN-based model has a one-class SVM as a loss layer of the model. The processor is further configured to generate a signal for initiating an action to the at least one of the plurality of machines to mitigate expected harm to the at least one item.
Abstract:
A method is provided for scalable supervised high-order parametric embedding for big data visualization. The method is performed by a processor and includes receiving feature vectors and class labels. Each feature vector is representative of a respective one of a plurality of high-dimensional data points. The class labels denote classes for the high-dimensional data points. The method further includes multiplying each feature vector by one or more factorized high-order tensors to obtain respective product vectors. The method also includes performing a maximally collapsing metric learning on the product vectors using learned synthetic exemplars and learned high-order filters. The learned high-order filters represent high-order embedding parameters. The method additionally includes performing an output operation to output a set of data that includes (i) interpretable factorized high-order filters, (ii) exemplars representative of the class labels and data separation properties in two-dimensional space, and (iii) a two-dimensional embedding of the high-dimensional data points.
Abstract:
Methods and systems for training a neural network include sampling multiple local sub-networks from a global neural network. The local sub-networks include a subset of neurons from each layer of the global neural network. The plurality of local sub-networks are trained at respective local processing devices to produce trained local parameters. The trained local parameters from each local sub-network are averaged to produce trained global parameters.
Abstract:
System and methods are disclosed to perform peptide-MHC interaction prediction by applying a high-order kernel function to determine a similarity between peptide sequences; applying one or more supervised strategies to the kernel to encode relevant physicochemical and interaction information about peptide sequence and MHC molecule; and applying a classifier to the kernel to identify the peptide-MHC interaction of interest in response to a query.
Abstract:
Systems and methods are disclosed for Knowledge-Driven Sparse Learning to Identify Interpretable High-Order Feature Interactions. This is done by generating one or more functional groups from gene features and gene and protein interaction grouping; selecting informative genes and functional interactions that exhibit differential patterns for the target disease and to generate a reduced feature space; and searching exhaustively on the reduced feature space by examining all possible pairs of interacting features (and possibly higher-order feature interactions) to identify combination of markers and complex patterns of feature interactions that are informative about the phenotypes in a sparse learning framework to select informative interactions and genes.