Abstract:
A heat/acoustic wave conversion component includes a partition wall that defines a plurality of cells extending from a first end face to a second end face, and has a cell hydraulic diameter HD of 0.4 mm or less, an end face open frontal area of 60% or more and 93% or less, and heat capacity per unit length in the extending direction that tends to decrease with distance from the first end face. A first end portion on the first end face side that accounts for a region of 10% of a total length of the heat/acoustic wave conversion component has 1.1 times or more the heat capacity of that of a second end portion on the second end face side that accounts for a region of 10% of the total length.
Abstract:
The thermoacoustic energy converting element part includes a plurality of through holes extending along a uniform direction to penetrate a body of the thermoacoustic energy converting element part to form traveling paths of acoustic waves. The element part includes a wall surrounding each of the through holes to extend in an extending direction of the through hole and configured to exchange heat between the fluid. The through hole includes a through hole that has a hydraulic diameter of 0.4 mm or smaller, and an open area ratio of the through holes is 60% or higher. A first layer and a second layer are alternately provided on the wall of the thermoacoustic energy converting element part along the extending direction. A porosity of the first layer is 0% or smaller than a porosity of the second layer. The thermal conductivity of the structure of the thermoacoustic energy converting element part along the extending direction is 2 W/m/K or lower. If a metal plate is provided as the first layer, a plurality of the metal plates having a roughened main surface is layered and bonded by thermocompression bonding to manufacture the thermoacoustic energy converting element part.
Abstract:
A porous honeycomb heat storage structure including: a honeycomb structure which has a porous partition wall which defines a plurality of cells extending one end face to the other end face and allows a reaction medium to flow into the cells; and a heat storage portion which is configured by filling a heat storage material performing heat storage and heat dissipation by a reversible chemical reaction with the reaction medium or physical adsorption/desorption in at least a portion of each cells, wherein the heat storage portion has an area ratio in a range from 60% to 90% with respect to a cross sectional area of a honeycomb cross section orthogonal to an axial direction of the honeycomb structure.
Abstract:
A heat/acoustic wave conversion component includes a partition wall that defines a plurality of cells extending from a first end face to a second end face and mutually converts heat exchanged between the partition wall and the working fluid and energy of acoustic waves resulting from oscillations of the working fluid. Hydraulic diameter HD of the heat/acoustic wave conversion component is 0.4 mm or less, where the hydraulic diameter HD is defined as HD=4×S/C, where S denotes an area of a cross-section of each cell perpendicular to the cell extending direction and C denotes a perimeter of the cross section. The heat/acoustic wave conversion component has an open frontal area at each end face of 60% or more and 93% or less. The partition wall has arithmetic surface roughness (Ra) at the surface of 3 μm or more and 20 μm or less.
Abstract:
A heat/acoustic wave conversion component includes a plurality of monolithic honeycomb segments each including a partition wall that defines a plurality of cells extending between both end faces, and the plurality of monolithic honeycomb segments each mutually converts heat exchanged between the partition wall and the working fluid in the cells and energy of acoustic waves resulting from oscillations of the working fluid. In the heat/acoustic wave conversion component including the plurality of honeycomb segments each being monolithic configured, hydraulic diameter HD of the cells is 0.4 mm or less, open frontal area of the honeycomb segments is 60% or more and 93% or less, heat conductivity of the honeycomb segments is 5 W/mK or less, and a ratio HD/L of the hydraulic diameter HD to the length L of the honeycomb segment is 0.005 or more and less than 0.02.
Abstract:
To manufacture a thermoacoustic energy converting element part, a plurality of first plates and a plurality of second plates are formed. The first plate is provided with a plurality of linear penetration slits which are in parallel with each other and separated along a direction perpendicular to an extending direction of the slit. The slit penetrates the first plate in a thickness direction. The second plate is not provided with any penetration slit. A plate assembly is formed by layering some of the plurality of first plates between adjacent two of the plurality of second plates of which main surfaces face each other. The plate assembly is provided with a plurality of communicating passages formed with the penetration slits adjoining each other in a layering direction. Portions of the assembly at both ends in the extending direction of the penetration slits are cut off to open the communicating passages on both sides of the assembly.