Abstract:
A pedestal for use with an adhesive melter adapted for melting adhesive particulates includes a support structure, a hopper, and a flow tube. The support structure has an upper portion adapted to support the adhesive melter. The hopper is connected to the support structure and positioned generally below the upper portion of the support structure. In addition, the hopper has an opening adapted for receiving adhesive particulates for storage therein. The flow tube has a first end portion and a second end portion. The first end portion is fluidly connected to the hopper, and the second end portion is fluidly connected to the adhesive melter. Furthermore, the flow tube is configured for moving adhesive particulates from the hopper to the adhesive melter via an air pressure differential created between the first and second end portions of the flow tube.
Abstract:
A melter includes a reservoir for receiving melted adhesive from the heater unit, and a pump in fluid communication with the reservoir and located within a heated housing. The heated housing heats the pump during startup and regular operation of the adhesive melter, thereby reducing delays in operation caused by slow warming of adhesive within the pump. The pump is configured to be inserted into the heated housing.
Abstract:
A method of supplying adhesive particulates from a hopper to an adhesive melter is described. Initially, a flow tube is fluidly coupled between the adhesive melter and the hopper. Next, forced air is supplied through the flow tube to move the adhesive particulates from the hopper into the adhesive melter for melting the adhesive particulates into a fluid adhesive.
Abstract:
An adhesive dispensing device includes a heater unit for melting adhesive, a fill system communicating with a receiving space for feeding the heater unit, and a reservoir for receiving melted adhesive from the heater unit. The dispensing device also includes a capacitive level sensor located along a sidewall of the receiving space such that the level of adhesive in the receiving space can be detected by sensing the difference in dielectric capacitance where the adhesive is located compared to where air acts as the dielectric. The size of the driven electrode produces a broader sensing window capable of generating multiple control signals corresponding to different fill levels of adhesive. The receiving space and reservoir are minimized in size so that adhesive is not held at elevated temperatures long enough to char or degrade.
Abstract:
A melter includes a heater unit for melting adhesive, a reservoir for receiving melted adhesive from the heater unit, and a pump in fluid communication with the reservoir and located within a heated housing. The heated housing heats the pump during startup and regular operation of the adhesive melter, thereby reducing delays in operation caused by slow warming of adhesive within the pump. The heated housing may be a manifold in fluid communication with the reservoir and with fluid outlets in some embodiments, but the heated housing may also be a separate heat block. In either type of embodiment, the pump is configured to be inserted cartridge-style into the heated housing and held in position using a single locking fastener. Additional elements such as insulating external housings and mounting hooks may also be used to further encourage conductive heat transfer into the structure surrounding the pump.
Abstract:
A device for dispensing a heated liquid, such as a hot melt adhesive, includes a vertically oriented mounting plate; a melter subassembly including an adhesive manifold, a heater, and a pump adapted to dispense the heated liquid; a control subassembly adapted to control one or more components of the melter subassembly; and a subassembly cover coupled to the mounting plate for movement between an open condition and a closed condition. The subassembly cover thermally insulates the melter assembly from the control assembly when in the closed condition.
Abstract:
A melter includes a reservoir for receiving melted adhesive from the heater unit, and a pump in fluid communication with the reservoir and located within a heated housing. The heated housing heats the pump during startup and regular operation of the adhesive melter, thereby reducing delays in operation caused by slow warming of adhesive within the pump. The pump is configured to be inserted into the heated housing.
Abstract:
An adhesive dispensing device includes a heater unit for melting adhesive, a fill system communicating with a receiving space for feeding the heater unit, and a reservoir for receiving melted adhesive from the heater unit. The dispensing device also includes a capacitive level sensor located along a sidewall of the receiving space such that the level of adhesive in the receiving space can be detected by sensing the difference in dielectric capacitance where the adhesive is located compared to where air acts as the dielectric. The size of the driven electrode produces a broader sensing window capable of generating multiple control signals corresponding to different fill levels of adhesive. The receiving space and reservoir are minimized in size so that adhesive is not held at elevated temperatures long enough to char or degrade.
Abstract:
A device for dispensing a heated liquid, such as a hot melt adhesive, includes a vertically oriented mounting plate; a melter subassembly including an adhesive manifold, a heater, and a pump adapted to dispense the heated liquid; a control subassembly adapted to control one or more components of the melter subassembly; and a subassembly cover coupled to the mounting plate for movement between an open condition and a closed condition. The subassembly cover thermally insulates the melter assembly from the control assembly when in the closed condition.