Abstract:
An adhesive melter and a method for operating the adhesive melter enables predictive maintenance of an exhaust air filter used to remove pressurized air flow that delivers solid adhesive particulate from a fill system into the melter. To this end, the fill system repeatedly actuates to refill a receiving space, and a controller monitors a duration of each fill system cycle. When changes in a calculated average duration of a plurality of fill system cycles exceed a maintenance threshold, an alert is emitted at a user interface to prompt maintenance or replacement of the exhaust air filter before a complete shutdown of the fill system is caused by clogging of the exhaust air filter. Consequently, unplanned downtimes caused by clogged exhaust air filters in the adhesive melter can be minimized, regardless of any variable conditions occurring at the melter.
Abstract:
Systems, feeder devices and methods for moving particulate hot melt adhesive from an adhesive supply to an adhesive melter. A feeder device includes a body having an inlet and an outlet, and an interior communicating with the inlet and the outlet. The inlet is configured to receive particulate hot melt adhesive from an outlet of the adhesive supply, and the outlet is configured to provide particulate hot melt adhesive to an inlet of the adhesive melter. The feeder device further includes a mechanical agitator positioned in the interior for urging the particulate hot melt adhesive in a flow direction toward the outlet.
Abstract:
An adhesive bin (10) for storing and moving adhesive particulate (14) to an adhesive melter (12) includes a supply hopper (16), a transfer pump (62) operable to generate a vacuum, and a shroud (94). The supply hopper (16) has a sidewall (20, 22, 24, 26) and defines an interior space (36). The transfer pump (62) extends through the sidewall (22) and into the interior space (36). In addition, the shroud (94) is connected to the sidewall (22) and extends into the interior space (36) and at least partially surrounds an inlet (82) of the transfer pump (62).
Abstract:
A transfer pump for moving pellets of adhesive includes a pump housing with an adhesive inlet coupled to a supply hopper, an adhesive outlet coupled to an outlet hose, and an adhesive passage extending between the adhesive inlet and the adhesive outlet. A first air nozzle communicates with the adhesive passage adjacent the adhesive inlet and expels a first air jet that pushes pellets of adhesive through the adhesive passage. A second air nozzle communicates with the adhesive passage between the adhesive inlet and the adhesive outlet and expels a plurality of second air jets that draw pellets of adhesive through the adhesive passage by a vacuum force. The first and second air nozzles prevent clogging of pellets in the adhesive passage and enable movement of larger pellets than either air nozzle individually.
Abstract:
A melter for heating and melting particulate hot melt adhesive into a liquefied form is disclosed. The melter includes a heated receiving device having an interior with an inlet configured to receive the particulate hot melt adhesive and an outlet. A flexible hopper holds a supply of the particulate hot melt adhesive and a particulate hot melt adhesive feed device allows the particulate hot melt adhesive to be directed from the flexible hopper to the inlet of the heated receiving device.
Abstract:
Methods for storing and moving adhesive particulate to an adhesive melter are disclosed. An interior space of a supply hopper is filled with adhesive particulate. A transfer pump is actuated to generate a vacuum at an inlet of the transfer pump to actuate removal of the adhesive particulate from the supply hopper. A consistent minimized depth of the adhesive particulate located directly above the inlet is maintained with a shroud located within the interior space of the supply hopper. In addition, adhesive particulate can be received in an interior space of a container. An open space is maintained within the interior space of the container proximate the pump inlet, where the open space entrains gas to be drawn by the transfer pump. The transfer pump can be actuated to generate a vacuum at the pump inlet to cause removal of the adhesive particulate from the container.
Abstract:
An adhesive melter and a method for operating the adhesive melter enables predictive maintenance of an exhaust air filter used to remove pressurized air flow that delivers solid adhesive particulate from a fill system into the melter. To this end, the fill system repeatedly actuates to refill a receiving space, and a controller monitors a duration of each fill system cycle. When changes in a calculated average duration of a plurality of fill system cycles exceed a maintenance threshold, an alert is emitted at a user interface to prompt maintenance or replacement of the exhaust air filter before a complete shutdown of the fill system is caused by clogging of the exhaust air filter. Consequently, unplanned downtimes caused by clogged exhaust air filters in the adhesive melter can be minimized, regardless of any variable conditions occurring at the melter.
Abstract:
An adhesive melter and a method for operating the melter enables predictive maintenance of an exhaust air filter used to remove pressurized air flow that delivers solid adhesive particulate from a fill system into the melter. To this end, the fill system repeatedly actuates to refill a receiving space, and a controller monitors a duration of each fill system cycle. When changes in a calculated average duration of a plurality of fill system cycles exceed a maintenance threshold, an alert is emitted at a user interface to prompt maintenance or replacement of the exhaust air filter before a complete shutdown of the fill system is caused by clogging of the exhaust air filter. Consequently, unplanned downtimes caused by clogged exhaust air filters in the adhesive melter can be minimized, regardless of any variable conditions occurring at the melter.
Abstract:
An adhesive dispensing device includes a heater unit for melting adhesive, a fill system communicating with a receiving space for feeding the heater unit, and a reservoir for receiving melted adhesive from the heater unit. The dispensing device also includes a capacitive level sensor located along a sidewall of the receiving space such that the level of adhesive in the receiving space can be detected by sensing the difference in dielectric capacitance where the adhesive is located compared to where air acts as the dielectric. The size of the driven electrode produces a broader sensing window capable of generating multiple control signals corresponding to different fill levels of adhesive. The receiving space and reservoir are minimized in size so that adhesive is not held at elevated temperatures long enough to char or degrade.