Abstract:
An adhesive dispensing system is disclosed. The system includes a heater unit configured to heat an adhesive to an application temperature, a fill system configured to supply the adhesive to said heater unit, and a controller. The controller is configured to actuate the fill system to supply the adhesive to the heater unit, operate the heater unit to maintain a unit set point temperature sufficient to heat the adhesive to the application temperature, and operate the heater unit to reduce its temperature from the unit set point temperature following a first set threshold time from actuation of the fill system to supply the adhesive to the heater unit.
Abstract:
An adhesive dispensing device includes a heater unit for melting adhesive, a fill system communicating with a receiving space for feeding the heater unit, and a reservoir for receiving melted adhesive from the heater unit. The dispensing device also includes a capacitive level sensor located along a sidewall of the receiving space such that the level of adhesive in the receiving space can be detected by sensing the difference in dielectric capacitance where the adhesive is located compared to where air acts as the dielectric. The size of the driven electrode produces a broader sensing window capable of generating multiple control signals corresponding to different fill levels of adhesive. The receiving space and reservoir are minimized in size so that adhesive is not held at elevated temperatures long enough to char or degrade.
Abstract:
A melter for heating and melting particulate hot melt adhesive into a liquefied form is disclosed. The melter includes a heated receiving device having an interior with an inlet configured to receive the particulate hot melt adhesive and an outlet. A flexible hopper holds a supply of the particulate hot melt adhesive and a particulate hot melt adhesive feed device allows the particulate hot melt adhesive to be directed from the flexible hopper to the inlet of the heated receiving device.
Abstract:
A fill system is configured to supply particulate adhesive such as pellets to an adhesive dispensing system and is configured to provide a visual indication when a supply container approaches an empty condition. The fill system includes the supply container, which has an interior space for holding pellets, and an indicator device that emits a visual indication by actuating a light source communicating with the interior space. As a result, when the level of pellets within the interior space drops to a threshold approaching the empty condition, the light energy emitted by the indicator device is visible outside the supply container. The fill system may then be refilled before the completely empty condition is reached.
Abstract:
An adhesive dispensing device (10) includes a melt module (12) including a housing (78) that defines a receiving space to receive adhesive and a heater (114) to heat the housing to melt the adhesive, and a control module (14) releasably connected to the melt module. The control module includes a controller (36) to automatically recognize a characteristic associated with the melt module and operate the melt module using instructions stored on the controller that correspond to the characteristic of the melt module. A method of operating the adhesive dispensing device is also disclosed.
Abstract:
Systems and methods for controlling adhesive application are disclosed. The systems and methods may include a controller and one or more sensors configured to measure an amount of adhesive applied to a plurality of substrates by a pump, detect a number of the substrates, determine an amount of adhesive applied per substrate, compare the adhesive applied per substrate to a target value, and adjust a pressure of the pump based on the comparison. The sensor(s) may include one or more of a valve sensor coupled to an adhesive supply, a flow rate sensor coupled to a manifold, a flow rate sensor coupled to one or more hoses, and a flow rate sensors coupled to a gun.
Abstract:
An adhesive dispensing system includes a pump and at least one sensor positioned to sense movements of a component of the pump and produce signals based on the sensed movements. The dispensing system also includes a controller communicating with the at least one sensor to collect information regarding operational cycles of the pump based on the signals. As a result, one or more diagnostic processes are enabled at the controller during operation of the adhesive dispensing system. These diagnostic processes may include a leak rate test for the dispensing system, an overspeed detection test for the pump, and expected life cycle monitoring of the pump or other components.
Abstract:
A dispensing system includes a hot melt unit delivering heated adhesive through a hose to at least one dispenser gun, which is actuated by an outside source of gun actuation. Rather than directly connecting the source of gun actuation to the dispenser gun, the source of gun actuation is connected to the hot melt unit and then to the dispenser gun. For example, the gun actuation signals may be terminated at a terminal block in the hot melt unit, which enables the hot melt unit to monitor the gun actuation signals. The dispensing system is operable to perform various diagnostics pertaining to the dispenser gun and the system as a whole based on these monitored gun actuation signals.
Abstract:
In one example, a melter has a housing, a heater, a vent, and a filter medium. The housing defines a receiving space that supports adhesive therein. The heater heats the receiving space of the housing to melt the adhesive. The melter defines an adhesive inlet therein that receives adhesive carried by a transport supply gas into the receiving space. The vent extends through a wall of the melter and permits the transport supply gas to escape from the melter. The filter medium is supported in the vent to capture particulates from the transport supply gas escaping the receiving space, and is positioned relative to the receiving space such that heat from the receiving space causes the particulates captured by the filter medium to melt and fall into the receiving space.
Abstract:
A hot melt dispensing system is described. The hot melt dispensing system includes a melter that melts solid material into hot melt, a pump that pumps the hot melt from the melter to at least one applicator, and a pressure control system that controls a pressure of pressurized air for operating the pump. The pressure control system includes a regulator assembly that controls the pressure of the pressurized air, and a drive component that actuates the regulator assembly. The hot melt dispensing system also includes a controller that determines a pressure setting for the pressurized air. The drive component receives the pressure setting from the controller and actuates the regulator assembly to a position associated with the pressure setting.