Abstract:
A tire and wheel rim assembly comprising a wheel rim having flange portions and ledge portions, wherein each ledge portion has at least one circumferentially continuous groove with a circumferentially continuous surface. The assembly further includes a tire having bead regions comprising a ledge portion having a toe, a heel, and at least one circumferentially continuous rib with a peak, wherein the at least one circumferentially continuous rib of the tire extends radially into the at least one circumferentially continuous groove of the wheel rim.
Abstract:
An improved method for determining an initial flat spot magnitude on a tire that has been resting for a period of time on a substantially flat surface uses regression analysis. In accordance with the method, values of a tire flat spot magnitude for a particular type of tire are determined at a number of measurement intervals by a uniformity machine that spins the tire. An equation having at least two exponentially decaying terms is then determined that corresponds to the measured data points. Regression analysis is then used to determine an estimate for an initial flat spot magnitude. The method can be used to evaluate the effectiveness of different tire designs with respect to flat spot recovery rates.
Abstract:
A friction testing machine and method for measuring friction characteristics between a test sample and a friction surface. The machine and method are particularly suited for measuring the coefficient of friction between a rubber specimen or a tread element and different friction surfaces at different sliding velocities, contact pressures and orientations. A preferred embodiment of machine is self-contained and portable, configured for easy and quick changing of the friction surface, and provides for rotating the test sample about an axis normal to the sliding surface and the direction of movement of the sample relative to the friction surface. In general, a friction test machine according to the invention comprises a sample holder configured to hold a sample in frictional engagement with a friction surface, and a motion device for effecting relative movement between the friction surface and sample holder in a first direction. Also provided is a variable weight loading device on the sample holder for loading the sample holder such that a selected load can be applied to the sample normal to the friction surface, and a force measurement device for obtaining a measurement indicative of the frictional force resisting such relative movement between the sample holder and the friction surface effected by the motion device.
Abstract:
A tire comprising a circumferential tread, a circumferential tread, at least one circumferential belt, at least one carcass ply, a pair of sidewalls, and a pair of bead portions. Each of the bead portions comprising a bead core, a bead filler, a toe region, a heel region, a ledge region, and a flange region. The ledge region is provided between the toe region and the heel region, wherein the ledge region comprises at least one circumferentially continuous groove. The flange region each extending circumferentially about the tire, the flange region provided radially above the ledge region, wherein the flange region comprises at least one circumferentially continuous groove.
Abstract:
The invention improves tire flat spotting by providing a bead assembly that has bead filler elements disposed outside the body cords so that the turn up portion of the ply of body cords is disposed immediately back against the main portion of the ply of body cords above the bead core. This carcass structure increases the stiffness of the lower sidewall and decreases the flat spotting experience by the tire. In one embodiment of the invention, a reinforcing ply is wrapped around the bead filler elements to further increases the stiffness of the lower sidewall. In another embodiment, a bead filler element is disposed inside the body cords so that an air pocket is not formed in the carcass during the manufacturing process.
Abstract:
A supportive tire rack for green tire transfer and storage includes a base assembly that carries at least four support pins that are horizontally cantilevered from the base. A pair of upper support plates and a pair of lower support plates are carried by the pins. The upper support plates engage the bead rings of the tire while the lower support plates cradle the lower surface of the tire. Each support plate is pivotally carried on an arm that is pivotally carried on a pin. Each arm is also in the form of a damper that dampens oscillatory forces in the tire. The arms and plates are biased toward resting positions by springs.
Abstract:
A supportive tire rack for green tire transfer and storage includes a base assembly that carries at least four support pins that are horizontally cantilevered from the base. A pair of upper support plates and a pair of lower support plates are carried by the pins. The upper support plates engage the bead rings of the tire while the lower support plates cradle the lower surface of the tire. Each support plate is pivotally carried on an arm that is pivotally carried on a pin. Each arm is also in the form of a damper that dampens oscillatory forces in the tire. The arms and plates are biased toward resting positions by springs. Alternatively, the lower support is a spring biased sling formed of a flexible material and the upper support is a pair of spring biased T-shaped arms which are pivotally mounted on two of the pins for engaging the bead rings.
Abstract:
A friction testing machine and method for measuring friction characteristics between a test sample and a friction surface. The machine and method are particularly suited for measuring the coefficient of friction between a rubber specimen or a tread element and different friction surfaces at different sliding velocities, contact pressures and orientations. A preferred embodiment of machine is self-contained and portable, configured for easy and quick changing of the friction surface, and provides for rotating the test sample about an axis normal to the sliding surface and the direction of movement of the sample relative to the friction surface. In general, a friction test machine according to the invention comprises a sample holder configured to hold a sample in frictional engagement with a friction surface, and a motion device for effecting relative movement between the friction surface and sample holder in a first direction. Also provided is a variable weight loading device on the sample holder for loading the sample holder such that a selected load can be applied to the sample normal to the friction surface, and a force measurement device for obtaining a measurement indicative of the frictional force resisting such relative movement between the sample holder and the friction surface effected by the motion device.