Abstract:
An analog-digital conversion system comprising at least one variable gain amplifier amplifying an input signal e, an analog-digital converter CAN digitizing said signal e, an interference-suppressing digital processing module, processing the digitized signal, also comprises a first automatic gain control AGC loop, called the analog AGC loop, that compares an estimate of the output power of the CAN converter with a control setpoint g1 called the control setpoint of the analog AGC loop, a gain ga used to control the variable gain amplifier being deduced from this comparison. The system also comprises a second automatic gain control AGC loop called the digital loop, said digital loop comparing an estimate of the power after the interference-suppressing digital processing with a predetermined control setpoint gn, the analog AGC loop being controlled by a control setpoint deduced from this comparison.
Abstract:
The invention relates to a method for calibrating an antenna of a receiver of signals (s1, . . . , sN) originating from a plurality of sources, said receiver comprising a plurality of sensors (c1, . . . , cM), characterized in that it comprises the following steps: measurement of a phase shift (dm,n measure) for each of the sensors (c1, . . . , cM) on each of the signals (s1, . . . , sN), determination of at least one attitude value of the antenna, said attitude being defined by a set of coordinates, calculation, for each of the sensors on each of the signals, of a theoretical phase shift (dm,n theoretical) as a function of the attitude of the antenna, from the directions of arrival of the signals, calculation of a bias (β1 sensor m) for each of the sensors from the measured phase shifts (dm,n measure) and from the theoretical phase shifts (dm,n theoretical) of the sensor.
Abstract:
A system for receiving a radionavigation signal, notably in a jammed medium, emitted by a satellite of a satellite positioning system, includes: at least one first multi-correlator and at least one second multi-correlator disposed in parallel and operating respectively at a frequency; filtering means, disposed upstream of said multi-correlators; a delay line, disposed on the branch, between the filtering means and the second multi-correlator; means for sub-sampling at the frequency adapted for sub-sampling the signal transmitted directly and by branching with delay by the filtering means; and demodulation means eliminating the Doppler effect, disposed between the sub-sampling means and the first and second multi-correlators.
Abstract:
A satellite positioning receiver is disclosed having at least one receive channel. Each receive channel is intended to perform a combined processing of a first S1 and a second S2 radiofrequency signals separated in frequency. The signals are received by analogue paths of the receive channel then digitized to be processed in digital receive paths. Each receive channel has a first (160) and a second (162) correlation circuits, respectively receiving the first and the second received digitized signals. Carrier and code phase discriminators are common to both correlation circuits. A local code generator is provided for each code correlation path. The local codes are offset by a positive differential delay correction +Δτcal for one of the correlation circuits and a negative differential delay correction −Δτcal for the other. These corrections tend to compensate for the relative delay difference between the two signals in the analogue paths of the receive channel. A phase differential correction device Δφcal tends to compensate for the phase differential deviation between the two signals occurring in the analogue paths of the receive channel.
Abstract:
The invention relates to methods of processing signals subjected to interference. It consists, when this signal is formed of a first wideband channel and of a second narrowband channel modulating one and the same carrier in which these signals are cut off for the duration of the interference, in using a single phase loop and a single code loop to process these two channels simultaneously. It makes it easier to process signals in satellite based navigation systems of the GPS type when they are scrambled by the DME-type distance measuring system signals, as well as more generally making it possible to increase the robustness of the processing by joint processing of the bands broadcast to the users.
Abstract:
The present invention relates to the field of pyrotechnic igniters, especially those intended for motor-vehicle safety. The igniters (1) according to the invention have a thin-film resistive bridge (19) connected via two thin metal areas (17 and 18) to two electrodes (9 and 10). An initiating lacquer (20) covers the resistive bridge (19) and a varistor attached to the said areas protects the igniter from electrostatic discharges. The resistive bridge (19) has a volume resistivity of between 0.5×106 and 2×106 &OHgr;.m and the initiating lacquer is made from a primary explosive. The igniters (1) have a no-fire current of greater than 500 mA and an all-fire current of less than 1200 mA.
Abstract:
A centrifugal pump (1, 110) includes an apparatus for the removal of particles, wherein the centrifugal pump includes an impeller (6, 106). A fluid (2, 102) can be conveyed by means of the impeller (6, 106) through a suction passage (5, 105) from a suction stub (3, 103) to a pressure stub (4, 104). The impeller (6, 106) is rotatable in a stator (7, 107). A gap (9, 19, 109) is arranged between the stator (7, 107) and the impeller (6, 106), wherein the gap (9, 19, 109) opens into a storage space (11, 21, 111) for particles. The storage space (11, 21, 111) communicates with the suction passage (5, 105) via a return line (12, 112) running through the stator (7, 107).
Abstract:
The presently disclosed subject matter relates to methods and compositions for identifying, selecting, and/or producing drought tolerant maize plants or germplasm. Maize plants or germplasm that have been identified, selected, and/or produced by any of the methods of the presently disclosed subject matter are also provided.
Abstract:
A system for receiving a radionavigation signal, notably in a jammed medium, emitted by a satellite of a satellite positioning system, includes: at least one first multi-correlator and at least one second multi-correlator disposed in parallel and operating respectively at a frequency; filtering means, disposed upstream of said multi-correlators; a delay line, disposed on the branch, between the filtering means and the second multi-correlator; means for sub-sampling at the frequency adapted for sub-sampling the signal transmitted directly and by branching with delay by the filtering means; and demodulation means eliminating the Doppler effect, disposed between the sub-sampling means and the first and second multi-correlators.
Abstract:
Method of resolving ambiguity for determining the main peak of the autocorrelation function of signals transmitted by a set of satellites and received by a receiver of a radionavigation system, a signal received originating from a satellite comprising two received spectral components right and left, the said method comprising the following steps: the right and left components received are demodulated by a BPSK demodulation method the central carrier is tracked by means of a central carrier loop which calculates estimations of central carrier phase errors so as to generate carrier commands, the code is tracked by means of a code loop which calculates instantaneous estimations of code errors so as to generate code commands, wherein the code commands are furthermore generated on the basis of instantaneous estimations of sub-carrier phase errors.