Abstract:
An endoscope system is provided with: a processor; a light source; and an image pickup device. The processor performs control for causing reflected light images corresponding to a predetermined period before start of the fluorescence occurrence period during the fluorescence non-occurrence period, among the reflected light images, to be recorded to the first storage medium; and, furthermore, performs control for causing the reflected light images to be recorded to the first storage medium during an after-end-of-fluorescence-occurrence period corresponding to a predetermined period with an end of the fluorescence occurrence period as a start point, and performs control for causing the reflected light images not to be recorded to the first storage medium during the fluorescence non-occurrence period after an end of the after-end-of-fluorescence-occurrence period.
Abstract:
A fluorescence endoscope apparatus includes: a light source unit emitting light in a combination of light in plural types of wavelength bands in two types of wavelength ranges of RGB and two types of exciting light, with plural types of emitting patterns and in a time division; an image pickup unit receiving reflected light and two types of fluorescence; and an image-processing unit outputting a white light image and two types of fluorescence images.
Abstract:
A fluoroscopy apparatus including: an illumination unit having a light source radiating illumination light and excitation light onto an observation target, a fluorescence-imaging unit acquiring a fluorescence image by imaging fluorescence generated at the observation target by the excitation light, a white-light-imaging unit acquiring a reference image by imaging light returning from the observation target by the illumination light, and an image-correction unit obtaining a correction fluorescence image by raising the luminance value of the fluorescence image to the power of a reciprocal of a first and second exponent obtained by a power approximation of a distance characteristic of luminance versus observation distance, for the fluorescence image, and that obtains a corrected fluorescence image by dividing the correction fluorescence image by the correction reference image.
Abstract:
A fluoroscopy apparatus including: an illumination unit having a light source radiating illumination light and excitation light onto an observation target, a fluorescence-imaging unit acquiring a fluorescence image by imaging fluorescence generated at the observation target by the excitation light, a white-light-imaging unit acquiring a reference image by imaging light returning from the observation target by the illumination light, and an image-correction unit obtaining a correction fluorescence image by raising the luminance value of the fluorescence image to the power of a reciprocal of a first and second exponent obtained by a power approximation of a distance characteristic of luminance versus observation distance, for the fluorescence image, and that obtains a corrected fluorescence image by dividing the correction fluorescence image by the correction reference image.
Abstract:
Provided is an image processing device including an illuminating portion that irradiates a subject with illumination light and excitation light; a fluorescence image-acquisition portion that acquires a fluorescence image by capturing fluorescence generated at the subject; a return-light image-acquisition portion that acquires a return-light image by capturing return light returning from the subject; a color-image generating portion that generates a plurality of color images by adding different types of color information that constitute a color space to the acquired fluorescence image and return-light image; and an image combining portion that combines the plurality of color images that have been generated, wherein at least one of the fluorescence image and the return-light image is subjected to, by the color-image generating portion), correction processing in which exponents for distance characteristics, which are approximated to exponential functions, for the fluorescence image and the return-light image are matched with each other.