Abstract:
Described herein are systems and methods for providing access to a database in a multi-tenant environment, including the use of a connection pool, with support for efficient repurposing of connections. In accordance with an embodiment, a software application can request that a connection be provided, to enable access to the database. In response to receiving the request, the connection pool can first determine if a particular connection with the exact desired attributes already exists within the pool, but is borrowed at the time of the request. If such a connection exists, then the connection pool can wait a period of time for that particular connection to become available, referred to herein as a double-wait. Subsequently, if the particular connection is not made available within the double-wait time period, the connection pool resumes its usual operation, for example by repurposing other connections.
Abstract:
Described herein is a system and method for providing a level 2 connection cache for use with a database environment. In accordance with an embodiment, a second level, or level 2 (L2), connection cache is used to cache no-session connections for use with a database. When a connection is requested, a no-session connection (NSC) can be retrieved from the cache and a database session is attached. Later, when the connection is closed, the database session is logged off and the no-session connection returned to the cache for subsequent use.
Abstract:
A system and method for connection labeling for use with connection pools. In accordance with an embodiment, the system comprises a connection pool, including a plurality of connection objects which provide connections that software applications can use to make requests to access the database, wherein each of the connections can be labeled according to the configuration of particular applications; and a connection pool logic that identifies connections labeled as high-cost connections, and avoids using those high-cost connections to serve requests when the total number of connections is below a particular threshold value.
Abstract:
Techniques are provided for processing a database command in a sharded database. The processing of the database command may include generating or otherwise accessing a shard key expression, and evaluating the shard key expression to identify one or more target shards that contain data used to execute the database command.
Abstract:
In accordance with an embodiment, the system enables access to a sharded database using a cache and a shard topology. A shard-aware client application connecting to a sharded database can use a connection pool (e.g., a Universal Connection Pool, UCP), to store or access connections to different shards or chunks of the sharded database within a shared pool. As new connections are created, a shard topology layer can be built at the database driver layer, which learns and caches shard key ranges to locations of shards. The shard topology layer enables subsequent connection requests from a client application to use a fast key path access to the appropriate shard or chunk.
Abstract:
Described herein are systems and methods for providing access to a database in a multi-tenant environment, including the use of a connection pool, and support for dynamic relocation of tenants. In accordance with an embodiment, a software application can obtain a connection from the connection pool, on behalf of a tenant, which enables the software application or tenant to access the database. A relocation process enables a tenant which is associated with a multi-tenant or other client application, to be relocated within the database environment, for example across a plurality of container databases, with near-zero downtime to the client application, including managing the draining of existing connections, and the migrating of new connections, without requiring changes to the underlying application.
Abstract:
In accordance with an embodiment, described herein are systems and methods for providing direct access to a sharded database. A shard director provides access by software client applications to database shards. A connection pool (e.g., a Universal Connection Pool, UCP) and database driver (e.g., a Java Database Connectivity, JDBC, component) can be configured to allow a client application to provide a shard key, either during connection checkout or at a later time; recognize shard keys specified by the client application; and enable connection by the client application to a particular shard or chunk. The approach enables efficient re-use of connection resources, and faster access to appropriate shards.
Abstract:
A system and method for connection labeling for use with connection pools, including support for cloud-based multi-tenant environments using connection labeling. In accordance with an embodiment, the system comprises a connection pool, including a plurality of connection objects which provide connections that software applications can use to make requests to access the database, wherein each of the connections can be labeled according to the configuration of particular applications; and a connection pool logic that identifies connections labeled as high-cost connections, and controls the creation or repurposing of high-cost connections to serve requests from the multiple tenants or tenant applications.
Abstract:
In accordance with an embodiment, described herein are systems and methods for providing direct access to a sharded database. A shard director provides access by software client applications to database shards. A connection pool (e.g., a Universal Connection Pool, UCP) and database driver (e.g., a Java Database Connectivity, JDBC, component) can be configured to allow a client application to provide a shard key, either during connection checkout or at a later time; recognize shard keys specified by the client application; and enable connection by the client application to a particular shard or chunk. The approach enables efficient re-use of connection resources, and faster access to appropriate shards.
Abstract:
In accordance with an embodiment, the system enables access to a sharded database using a cache and a shard topology. A shard-aware client application connecting to a sharded database can use a connection pool (e.g., a Universal Connection Pool, UCP), to store or access connections to different shards or chunks of the sharded database within a shared pool. As new connections are created, a shard topology layer can be built at the database driver layer, which learns and caches shard key ranges to locations of shards. The shard topology layer enables subsequent connection requests from a client application to use a fast key path access to the appropriate shard or chunk.