Optimizing graph queries by performing early pruning

    公开(公告)号:US11250059B2

    公开(公告)日:2022-02-15

    申请号:US16738972

    申请日:2020-01-09

    Abstract: Techniques are described herein for early pruning of potential graph query results. Specifically, based on determining that property values of a path through graph data cannot affect results of a query, the path is pruned from a set of potential query solutions prior to fully exploring the path. Early solution pruning is performed on prunable queries that project prunable functions including MIN, MAX, SUM, and DISTINCT, the results of which are not tied to a number of paths explored for query execution. A database system implements early solution pruning for a prunable query based on intermediate results maintained for the query during query execution. Specifically, when a system determines that property values of a given potential solution path cannot affect the query results reflected in intermediate results maintained for the query, the path is discarded from the set of possible query solutions without further exploration of the path.

    Efficient resource allocation for concurrent graph workloads

    公开(公告)号:US10853137B2

    公开(公告)日:2020-12-01

    申请号:US16351377

    申请日:2019-03-12

    Abstract: Techniques are described herein for allocating and rebalancing computing resources for executing graph workloads in manner that increases system throughput. According to one embodiment, a method includes receiving a request to execute a graph processing workload on a dataset, identifying a plurality of graph operators that constitute the graph processing workload, and determining whether execution of each graph operator is processor intensive or memory intensive. The method also includes assigning a task weight for each graph operator of the plurality of graph operators, and performing, based on the assigned task weights, a first allocation of computing resources to execute the plurality of graph operators. Further, the method includes causing, according to the first allocation, execution of the plurality of graph operators by the computing resources, and monitoring computing resource usage of graph operators executed by the computing resources according to the first allocation. In addition, the method includes performing, responsive to monitoring computing resource usage, a second allocation of computing resources to execute the plurality of graph operators, and causing, according to the second allocation instead of according to the first allocation, execution of the plurality of graph operators by the computing resources.

    EFFICIENT RESOURCE ALLOCATION FOR CONCURRENT GRAPH WORKLOADS

    公开(公告)号:US20200293372A1

    公开(公告)日:2020-09-17

    申请号:US16351377

    申请日:2019-03-12

    Abstract: Techniques are described herein for allocating and rebalancing computing resources for executing graph workloads in manner that increases system throughput. According to one embodiment, a method includes receiving a request to execute a graph processing workload on a dataset, identifying a plurality of graph operators that constitute the graph processing workload, and determining whether execution of each graph operator is processor intensive or memory intensive. The method also includes assigning a task weight for each graph operator of the plurality of graph operators, and performing, based on the assigned task weights, a first allocation of computing resources to execute the plurality of graph operators. Further, the method includes causing, according to the first allocation, execution of the plurality of graph operators by the computing resources, and monitoring computing resource usage of graph operators executed by the computing resources according to the first allocation. In addition, the method includes performing, responsive to monitoring computing resource usage, a second allocation of computing resources to execute the plurality of graph operators, and causing, according to the second allocation instead of according to the first allocation, execution of the plurality of graph operators by the computing resources.

    DETERMINISTIC SEMANTIC FOR GRAPH PROPERTY UPDATE QUERIES AND ITS EFFICIENT IMPLEMENTATION

    公开(公告)号:US20230095703A1

    公开(公告)日:2023-03-30

    申请号:US17479006

    申请日:2021-09-20

    Abstract: Efficiently implemented herein is a deterministic semantic for property updates by graph queries. Mechanisms of determinism herein ensure data consistency for graph mutation. These mechanisms facilitate optimistic execution of graph access despite a potential data access conflict. This approach may include various combinations of special activities such as detecting potential conflicts during query compile time, applying query transformations to eliminate those conflicts during code generation where possible, and executing updates in an optimistic way that safely fails if determinism cannot be guaranteed. In an embodiment, a computer receives a request to modify a graph. The request to modify the graph is optimistically executed after preparation and according to safety precautions as presented herein. Based on optimistically executing the request, a data access conflict actually occurs and is automatically detected. Based on the data access conflict, optimistically executing the request is prematurely and automatically halted without finishing executing the request.

    Fast in-memory technique to build a reverse CSR graph index in an RDBMS

    公开(公告)号:US11537579B2

    公开(公告)日:2022-12-27

    申请号:US16816686

    申请日:2020-03-12

    Abstract: In an embodiment, a computer obtains a mapping of a relational schema of a database to a graph data model. The relational schema identifies vertex table(s) that correspond to vertex type(s) in the graph data model and edge table(s) that correspond to edge type(s) in the graph data model. Each edge type is associated with a source vertex type and a target vertex type. Based on that mapping, a forward compressed sparse row (CSR) representation is populated for forward traversal of edges of a same edge type. Each edge originates at a source vertex and terminates at a target vertex. Based on the forward CSR representation, a reverse CSR representation of the edge type is populated for reverse traversal of the edges of the edge type. Acceleration occurs in two ways. Values calculated for the forward CSR are reused for the reverse CSR. Elastic and inelastic scaling may occur.

    PARALLEL AND EFFICIENT TECHNIQUE FOR BUILDING AND MAINTAINING A MAIN MEMORY CSR BASED GRAPH INDEX IN A RDBMS

    公开(公告)号:US20210334249A1

    公开(公告)日:2021-10-28

    申请号:US17370418

    申请日:2021-07-08

    Abstract: Herein are techniques that concurrently populate entries in a compressed sparse row (CSR) encoding, of a type of edge of a heterogenous graph. In an embodiment, a computer obtains a mapping of a relational schema to a graph data model. The relational schema defines vertex tables that correspond to vertex types in the graph data model, and edge tables that correspond to edge types in the graph data model. Each edge type is associated with a source vertex type and a target vertex type. For each vertex type, a sequence of persistent identifiers of vertices is obtained. Based on the mapping and for a CSR representation of each edge type, a source array is populated that, for a same vertex ordering as the sequence of persistent identifiers for the source vertex type, is based on counts of edges of the edge type that originate from vertices of the source vertex type. For the CSR, the computer populates, in parallel and based on said mapping, a destination array that contains canonical offsets as sequence positions within the sequence of persistent identifiers of the vertices.

    DYNAMIC ASYNCHRONOUS TRAVERSALS FOR DISTRIBUTED GRAPH QUERIES

    公开(公告)号:US20210240705A1

    公开(公告)日:2021-08-05

    申请号:US16778668

    申请日:2020-01-31

    Abstract: Techniques are described for enabling in-memory execution of any-sized graph data query by utilizing both depth first search (DFS) principles and breadth first search (BFS) principles to control the amount of memory used during query execution. Specifically, threads implementing a graph DBMS switch between a BFS mode of data traversal and a DFS mode of data traversal. For example, when a thread detects that there are less than a configurable threshold number of intermediate results in memory, the thread enters BFS-based traversal techniques to increase the number of intermediate results in memory. When the thread detects that there are at least the configurable threshold number of intermediate results in memory, the thread enters DFS mode to produce final results, which generally works to move the intermediate results that are currently available in memory to final query results, thereby reducing the number of intermediate results in memory.

Patent Agency Ranking