Abstract:
An electromagnetic propulsion system includes a plurality of primary windings and a permanent magnet arranged to move with respect to the plurality of primary windings. A secondary winding of the system is disposed in a non-moving relationship with the permanent magnet. An excitation energy is applied to the plurality of primary windings for creating a magnetic field that includes a base component and low frequency harmonic components. The base component substantially contributes toward motion between the plurality of primary windings and the permanent magnet and the low frequency harmonic components substantially contributes toward generating an electro-motive force in the secondary winding based on displacement between the plurality of primary windings and the permanent magnet.
Abstract:
An aspect includes a system with an energy storage device configured to provide electrical power to a conveyance apparatus of a conveyance system, a power management system configured to determine a charging schedule to recharge the energy storage device based at least in part on a status of the conveyance system, and a dispatching system configured to modify a dispatch schedule of the conveyance system based at least in part on the charging schedule.
Abstract:
A hybrid energy storage system for an elevator car includes a converter disposed on the elevator car and receives power from a power source and provides a first DC voltage to a first DC bus and a second DC voltage to a second DC bus, a first energy storage device connected to the converter receives the first DC voltage on the first DC bus, and a second energy storage device connected to the converter receives the second DC voltage on the second DC bus. The system also includes a first load connected to the first DC bus and a second DC bus, and a second load connected to the second DC bus. Power is provided from the first energy storage device to the first load under a first selected condition and power is supplied from the second energy storage device to the first load under second selected condition.
Abstract:
An elevator system includes an elevator car disposed in and arranged to move along a hoistway. A linear propulsion system of the elevator system is constructed and arranged to propel the elevator car, and includes a plurality of primary coils engaged to and distributed along the hoistway generally defined by a stationary structure. A wireless power transfer system of the elevator system is configured to inductively transfer power to the elevator car. The wireless power transfer system includes a secondary coil mounted to the elevator car and is configured to be induced with electromotive forces by the primary coils and output power for use by the elevator car. A communication system of the elevator system is configured to utilize the secondary coil and the plurality of primary coils to exchange a communication data signal.
Abstract:
An elevator system includes an elevator car having an electrically powered car subsystem. A guide rail of the elevator system is constructed and arranged to guide the elevator car along a hoistway and in a direction of travel. An electromechanical propulsion system includes plurality of primary windings positioned along the hoistway, and a permanent magnet coupled to the elevator car for imparting motion to the elevator car in response to a drive excitation. A secondary winding is coupled to the elevator car and disposed adjacent to the permanent magnet along the direction of travel, and wherein the secondary winding is configured to utilize an excitation switching frequency ripple to generate a current to power the car subsystem.
Abstract:
An elevator system may include an elevator car having an electrically powered car subsystem and a guide rail constructed and arranged to guide the elevator car along a hoistway and in a direction of travel. Primary windings of the system are positioned along the hoistway, and a permanent magnet assembly is coupled to the elevator car. Together, the primary windings and the permanent magnet assembly define a linear motor for imparting motion to the elevator car in response to a drive signal. A secondary winding assembly of the elevator system is coupled to the elevator car and is located adjacent to the permanent magnet assembly along the direction of travel. In operation, the secondary winding assembly generates a current to power the car subsystem.