Abstract:
There is disclosed a shroud for a compressor stator, including: shroud segments extending circumferentially around an axis along portions of a circumference of the shroud. At least one of the shroud segments extending from a first lateral edge to a second lateral edge. The shroud segment has an inner face oriented toward the axis and an opposed outer face oriented away from the axis. At least one opening extends from the inner face to the outer face for receiving a vane of the compressor. A tab protrudes circumferentially from the second lateral edge and away from the first lateral edge. A slot extends circumferentially from the first lateral edge toward the second lateral edge. The tab is matingly received within a slot of an adjacent one of the shroud segments.
Abstract:
A compressor rotor for a gas turbine engine has blades circumferentially distributed around and extending a span length from a central hub. The blades include alternating first and second blades having airfoils with corresponding geometric profiles. The airfoil of the first blade has a coating varying in thickness relative to the second blade to provide natural vibration frequencies different between the first and the second blades.
Abstract:
A rotor for a gas turbine engine. The rotor includes blades circumferentially distributed around a hub. The blades have airfoils with a span defined between a root and tip, a chord defined between a leading edge and a trailing edge, and a thickness defined between a pressure side surface and suction side surface. The blades include first blades and second blades. The airfoil of the first blades has a first thickness distribution defining a first natural vibration frequency of the airfoils of the first blades. The airfoil of the second blades has a second thickness distribution defining a second natural vibration frequency different than the first natural vibration frequency. The first thickness distribution is different than the second thickness distribution along a radially-inner half of the span, and the first thickness distribution matches the second thickness distribution along a radially-outer half of the span.
Abstract:
An annular casing for a rotor of a gas turbine engine includes a casing treatment having at least one groove defined in the annular casing wall with an open end defined in an inner surface of the annular casing wall, and a perforated sheet overlapping the open end of the at least one groove. The perforated sheet includes a plurality of apertures therethrough in fluid communication with the at least one groove. A method of reducing flow losses through a flow path having a rotor with a plurality of rotating blades extending therethrough is also presented.
Abstract:
A single bolting flange arrangement for variable inlet guide vane (VIGV) connection includes a connection arm connected to a stem of the VIGV to rotate the VIGV. The connection arm is driven by a drive pin received in a slot of the connection arm. The connection arm has a bolting flange and the stem of the VIGV is fastened to one side of the single bolting flange by a bolt/nut assembly.
Abstract:
The gas turbine engine can have a pneumatic actuator; an intake device secured to a gas path wall delimiting the gas path, the intake device having a tubular body protruding from the gas path wall into the gas path and an inlet aperture formed in the tubular body, the inlet aperture spaced-apart from the gas path wall and facing downstream relative a flow orientation of the gas path, the intake device having an internal conduit extending from the inlet aperture, along the tubular body, to an outlet across the gas path wall; and a fluid line fluidly connecting the outlet of the intake device to the pneumatic actuator.
Abstract:
A gas turbine engine assembly comprises a casing defining a gas path, the casing including a shroud having an annular body having a surface defining a portion of gas path, the shroud having slots configured for receiving inserted vanes. The slots are delimited substantially about their perimeter by respective flanges, the flanges radially offset from the shroud gas path surface so as to be disposed outside of said gas path, the flanges defined by opposed flange surfaces. Vanes received in the slots. Grommets engage the vanes at the slots. Inserts extend between the shroud and the grommets, the inserts having slots configured for engaging both of the opposed flanges, the inserts extending in a radial direction from at least the respective flange to an adjacent said shroud gas path surface to substantially matchingly mate with an inner surface the adjacent shroud gas path surface.
Abstract:
A gas turbine engine casing apparatus includes annular first and second annular cases connected by a spigot joint. The spigot joint includes an annular projection of the first annular case fitted into an annular recess of the second annular case. A plurality of circumferentially spaced apart scallops are formed on one of surfaces of the annular projection or of the annular recess, and are located in selective circumferential locations adjacent respective enhanced stiff areas of the first and second annular cases.
Abstract:
A rotor for a gas turbine engine comprises a rotor having a hub and blades around the hub, and extending from the hub to tips. The tips include first and second tip portions between their respective tip leading edge and tip trailing edge. Tips are spaced from a rotational axis of the rotor by spans. A mean span of a first tip portion of a first blade is greater than a mean span of a corresponding first tip portion of a second blade. A mean span of a second tip portion the first blade is less than a mean span of a corresponding second tip portion of the second blade.
Abstract:
A turbofan engine is disclosed which includes a nacelle assembly, having an interior surface for directing airflow, and a flow disruptor positioned on the interior surface upstream of the fan, the flow disruptor extending towards the axis a height greater than the anticipated boundary layer height of the airflow. A turbofan engine which includes an array of circumferentially disposed flow disruptors extending from a fan case inner surface is also disclosed. A method of mitigating fan flutter in a gas turbine engine by generating a circumferential asymmetrically in the airflow, upstream of the fan, is also described.