Abstract:
A method of managing processing resources in a mobile radio system, in which a first entity manages radio resources and corresponding processing resources, the latter being provided in a second entity separate from the first entity. The second entity signals to the first entity its global processing capacity, or capacity credit, and the consumption law, or quantity of the global processing capacity, or cost, for different spreading factor values. The first entity updates the capacity credit on the basis of the consumption law. In the case of multicode transmission using N spreading codes, the updating is effected on the basis of the cost for at least one of the N spreading codes.
Abstract:
A spectrum spreading of despreading device, in particular for transmission in a code division multiple access cellular mobile radio system is disclosed. In order to spread or despread an incoming sequence by means of spreading code of length Q, first, the data symbols of the income sequence are distributed into difference sub-sequences, and then each of the sub-sequences are spread or despread using a spreading code of length Q0 that is a multiple of length Q. The sub-sequences and the spreading codes of length Q0 that are applied to them are determined so that the sequence that would be obtained by superimposing the spread or despread sub-sequences obtained in this way is the same as that which would be obtained by spreading or despreading the incoming sequence using the code of length Q.
Abstract:
A method for improving performances of a mobile radiocommunication system using a power control algorithm for controlling a transmit power according to a transmission quality target value, and an adjustment algorithm for adjusting the transmission quality target value according to transmission requirements, the method including, upon the occurrence of a change in the transmission requirements, bypassing the adjustment algorithm, by applying a corresponding change to the transmission quality target value, so as to adjust it in an anticipated way.
Abstract:
A method for improving performances of a mobile radiocommunication system using a power control algorithm and being subject to transmission interruptions, wherein a recovery period is provided following a transmission interruption to compensate for the effects of the transmission interruption on the power control algorithm, and wherein the recovery period includes different parts wherein different types of compensation are successively carried out, these types being determined so as to ensure that a minimum compensation can first be obtained and that compensation is not higher than necessary thereafter.
Abstract:
A method for setting a transmission quality target value for power control in a mobile radiocommunication system, a method wherein: an offset is applied in an anticipated way to said transmission quality target value to compensate for the effects of a compressed mode whereby transmission is interrupted during transmission gaps in compressed frames, and the transmission rate is correspondingly increased to compensate for said transmission gaps, said offset includes a first component intended to compensate for the effects of said transmission rate increase, and a second component intended to compensate for the effects of said transmission gaps, said transmission rate increase applies not only for a compressed frame but for a plurality of frames including said compressed frame, and said second component is not applied for all frames of said plurality of frames, but only for said compressed frame and/or for at least one frame, or recovery frame, following said compressed frame.
Abstract:
A device (D) is dedicated to managing transmission of digital data blocks in High-Speed Downlink Shared Channel (HS-DSCH) downlink transport channel set up between a base station of a communications network and a user equipment. It comprises processing means (MT) adapted, each time that a given block must be transmitted to the user equipment via the transport channel, to select successive values of the redundancy parameter XRV in accordance with a selected sequence in which the value of the redundancy parameter XRV used for the first block transmission is selected to give priority to transmitting systematic bits.
Abstract:
A method of managing processing resources in a mobile radio system in which a first entity manages processing resources provided in a separate second entity, in which method: the second entity signals to the first entity a resource model representing its processing capacities, and different types of first and/or second entities are provided and able to support different types of resource models corresponding to different representations of said processing capacities, and an additional protocol is provided enabling the first and second entities to use the same type of resource model.
Abstract:
In a method of adjusting transmit times at the radio interface between network and mobile stations in a mobile radio system adjustments effected by the mobile stations are controlled by the network.
Abstract:
A method of managing processing resources in a mobile radio system, in which a first entity manages radio resources and corresponding processing resources, the latter being provided in a second entity separate from the first entity, in which method:the second entity signals to the first entity its global processing capacity, or capacity credit, and the consumption law, or amount of said global processing capacity, or cost, for different spreading factor values,the first entity updates the capacity credit on the basis of the consumption law, andin the case of variable spreading factor and/or variable number of spreading codes, said updating is effected on the basis of a reference spreading factor and/or a reference number of spreading codes.