摘要:
A filter arrangement particularly adapted to be used in a “splitter” of an ADSL system where several POTS equipment, e.g., subscriber sets, are connected to a same telecommunication line. The arrangement, located at the customer premises, includes for each POTS equipment a distinct low-pass filter circuit to separate low frequency POTS signals from high frequency ADSL signals simultaneously transmitted over the same copper twisted-pair telecommunication line. Each low-pass filter circuit is provided with a current sensing circuit, e.g., an electrical relay, which activates a switch when the current flowing through the filter exceeds a predetermined value. Since several high order filter circuits can not be put in parallel, mainly because their capacitive values will then add, the present filter circuit is basically a 1st order filter that comprises the series connection of two transformers separated by the coil of the relay. When the current increases, i.e., because the associated subscriber set goes off-hook, the switch activated by the relay inserts a capacitor across the line and between the two transformers. The filter circuit becomes then a 3rd order filter based on the cascade connection of the first transformer, the capacitor and the second transformer. Since the order to the other filters circuits of the arrangement is not changed, there is no mutual disturbance.
摘要:
A time error compensation arrangement (TCOMP) that compensates for a time error (&egr;, &Dgr;k) between a transmitter sample clock in a multi-carrier transmitter and a receiver sample clock (CLK) in a multi-carrier receiver (RX1, RX2) includes a digital time correction filter (FILTER, FILTER′), operative in time domain, to compensate for a linearly increasing contribution (&Dgr;k) in the time error (&egr;, &Dgr;k) and rotation means (ROTOR), operative in frequency domain, to compensate for a second, remaining contribution (&egr;) in said time error (&egr;, &Dgr;k).
摘要:
In a multicarrier transmission system, a transmitter (T, T′) sends digital data packets (D) modulated on a set of carriers to a receiver (R, R′). A subset of the carriers constituting the set of carriers has frequencies (f1, f2, f3, f4) in predetermined frequency ranges (Amateur Radio Band) with high risk for being affected by narrowbanded interference (RFI), e.g. originating from radio amateur transmission. The data bits of the digital data packets (D) that are allocated to the subset of carriers having frequencies (f1, f2, f3, f4) within these predetermined frequency ranges (Amateur Radio Band), are allocated thereto in a redundant way. Via an allocation message (AM) communicated between the transmitter (T, T′) and the receiver (R, R′) both are aware of the redundancy in the bit allocations. The receiver (R, R′) is capable of measuring the amount of narrowbanded interference (RFI) that affects each carrier within the subset of carriers that may be affected thereby, and can re-combine data bits allocated to carriers in this subset which carry redundant data bits so that interference immunity is improved.
摘要:
A telecommunication transmitter (TU) for a multi-carrier transmission system of the Digital Subscriber Line [DSL] type and which includes a coding circuit (MMC) able to generate “symbols” derived from carriers (Cl-Cn) modulated by incoming data, and a line driver circuit (LDC) to amplify these symbols. When idle data are received, the power dissipated in the transmitter is reduced because the symbols are then merely derived from a few or even a single carrier (the “pilot tone”) instead as from all the available carriers. The power dissipated is even more reduced because the line driver circuit is formed by a parallel connection of a high voltage but low efficiency (LL) and a lower voltage but higher performance (LH) line amplifier. The higher performance, and thus less power consuming, amplifier (LH) is used when idle data are received at the input (IN). In a variant, there is only one line amplifier of which the quiescent current is controlled as a function of the data traffic. In another variant, the number of carriers used by the coding circuit (MMC) is a function of the mean traffic of effective data received.