Abstract:
An ad hoc method is provided for synchronizing a wireless network. The method involves broadcasting a first signal including a join message from a first node (FN). The method also involves saving a first timestamps in a memory device internal to the FN after broadcasting the first signal. The method further involves generating a signal including a join response message after receiving the first signal. The join response message is comprised of a second timestamp indicating a local time during which the first signal was received at the second node (SN). The method also includes the step of determining an initial time offset by computing a difference between the first timestamp and the second timestamp. The method further includes the steps of generating a request to send (RTS) message at the FN. The FN uses the initial time offset in conjunction with the RTS message to asynchronously communicate with the SN.
Abstract:
An improved method is provided for identifying a repeated codeword in an incoming bit stream. The method includes: receiving an incoming bit stream having an expected codeword repeated a number of times; determining whether a group of incoming data bits correlates to the expected codeword, where each of the incoming data bits in the group need not match the corresponding data bit of the expected codeword; and determining whether the expected code word is repeated over a sequence of incoming data bits.
Abstract:
The unattended surveillance device may include a housing to be positioned for unattended surveillance, a video camera associated with or carried by the housing to capture video, and an image processor carried by the housing and cooperating with the video camera. The image processor extracts moving objects in the foreground of the captured video, generates a profile image or sequence of profile images of the extracted moving objects, compresses the sequence of profile images, and generates a surveillance information packet based upon the compressed sequence of profile images. Also, a wireless transmitter or transceiver may be associated with the image processor to transmit the surveillance information packet to a surveillance monitoring station.
Abstract:
A method (500) is provided for enabling a promiscuous monitoring of network communications by a monitor node (MN). The method includes the steps of: generating a directed IP packet at a first node (FN); transmitting a first unicast signal including a RTS message from the FN to a second node (SN); transmitting a second unicast signal including a CTS message from the SN to the FN in response to the first unicast signal; modifying the directed IP packet by changing an IP destination address of the directed IP packet to an IP subnet broadcast address; transmitting a uni-broadcast signal including the modified directed IP packet from the FN to the IP subnet broadcast address; and receiving the uni-broadcast signal at the SN and a third node (TN). The TN is an IP-enabled device provided to monitor network communications between the FN and SN.
Abstract:
An ad hoc method is provided for synchronizing a wireless network. The method involves broadcasting a first signal including a join message from a first node (FN). The method also involves saving a first timestamps in a memory device internal to the FN after broadcasting the first signal. The method further involves generating a signal including a join response message after receiving the first signal. The join response message is comprised of a second timestamp indicating a local time during which the first signal was received at the second node (SN). The method also includes the step of determining an initial time offset by computing a difference between the first timestamp and the second timestamp. The method further includes the steps of generating a request to send (RTS) message at the FN. The FN uses the initial time offset in conjunction with the RTS message to asynchronously communicate with the SN.
Abstract:
A method (500) is provided for enabling a promiscuous monitoring of network communications by a monitor node (MN). The method includes the steps of: generating a directed IP packet at a first node (FN); transmitting a first unicast signal including a RTS message from the FN to a second node (SN); transmitting a second unicast signal including a CTS message from the SN to the FN in response to the first unicast signal; modifying the directed IP packet by changing an IP destination address of the directed IP packet to an IP subnet broadcast address; transmitting a uni-broadcast signal including the modified directed IP packet from the FN to the IP subnet broadcast address; and receiving the uni-broadcast signal at the SN and a third node (TN). The TN is an IP-enabled device provided to monitor network communications between the FN and SN.
Abstract:
An improved method is provided for identifying a repeated codeword in an incoming bit stream. The method includes: receiving an incoming bit stream having an expected codeword repeated a number of times; determining whether a group of incoming data bits correlates to the expected codeword, where each of the incoming data bits in the group need not match the corresponding data bit of the expected codeword; and determining whether the expected code word is repeated over a sequence of incoming data bits
Abstract:
A system and method improves ECCM and data payload for a multi-h continuous phase modulated waveform with the addition of frequency hopping capabilities. The system and method exploit the short constraint length and rotational invariance of the multi-h CPM waveform to enable frequency hopping using current system capabilities. The transmitted data is structured such that the initial phase state of each hopping frame is in the zero state and the final phase state of each hopping frame is cycled to zero by the addition of flushing symbols and transition symbols. The transition symbols allow the oscillator to change frequency without disrupting the phase progression. The system and method uses synchronous demodulation of the transmitted data at a plurality of phase offsets and determines the best phase offset based on the total sum of the branch metrics for each symbol and phase offset. The system and method alternatively demodulated with a phase offset that is tracked and adjusted over each hop by accumulation of the frequency error.