Abstract:
Methods and apparatus are provided for implementing delays in an artificial nervous system. Synaptic and/or axonal delays between a post-synaptic artificial neuron and one or more pre-synaptic artificial neurons may be accounted for at the post-synaptic artificial neuron. One example method for managing delay between neurons in an artificial nervous system generally includes receiving, at a post-synaptic artificial neuron, input current values from one or more pre-synaptic artificial neurons; accounting for delays between the one or more pre-synaptic artificial neurons and the post-synaptic artificial neuron at the post-synaptic artificial neuron; and determining a state of the post-synaptic artificial neuron based at least in part on at least a portion of the input current values, according to the accounting.
Abstract:
Certain aspects of the present disclosure support operating simultaneously multiple super neuron processing units in an artificial nervous system, wherein a plurality of artificial neurons is assigned to each super neuron processing unit. The super neuron processing units can be interfaced with a memory for storing and loading synaptic weights and plasticity parameters of the artificial nervous system, wherein organization of the memory allows contiguous memory access.
Abstract:
Methods and apparatus are provided for implementing spike-timing dependent plasticity (STDP) using windowing of spikes. One example method for operating an artificial nervous system generally includes recording spike times for a first artificial neuron, recording spike times for a second artificial neuron coupled to the first artificial neuron via a synapse, processing spikes for the second artificial neuron according to a window based at least in part on the spike times for the first artificial neuron, and updating a parameter (e.g., a weight or a delay) of the synapse based on the processing.
Abstract:
Certain aspects of the present disclosure support techniques for time synchronization of spiking neuron models that utilize multiple nodes. According to certain aspects, a neural model (e.g., of an artificial nervous system) may be implemented using a plurality of processing nodes, each processing node implementing a neuron model and communicating via the exchange of spike packets carrying information regarding spike information for artificial neurons. A mechanism may be provided for maintaining relative spike-timing between the processing nodes. In some cases, a mechanism may also be provided to alleviate deadlock conditions between the multiple nodes.
Abstract:
A method for managing synapse plasticity in a neural network includes converting a first set of synapses from a plastic synapse type to a fixed synapse type. The method may also include converting a second set of synapses from the fixed synapse type to the plastic synapse type.
Abstract:
Certain aspects of the present disclosure support a method and apparatus for implementing kortex neural network processor within an artificial nervous system. According to certain aspects, a plurality of spike events can be generated by a plurality of neuron unit processors of the artificial nervous system, and the spike events can be sent from a subset of the neuron unit processors to another subset of the neuron unit processors via a plurality of synaptic connection processors of the artificial nervous system.
Abstract:
A method for providing diversity in a set of neurons in a neuron model includes retrieving a set of parameters for the set of neurons. The method also includes perturbing the set of parameters based on a neuron identification value, a level of perturbation for each parameter and/or parameter values.
Abstract:
A method for managing a neural network includes monitoring a congestion indication in a neural network. The method further includes modifying a spike distribution based on the monitored congestion indication.
Abstract:
Methods and apparatus are provided for inferring and accounting for missing post-synaptic events (e.g., a post-synaptic spike that is not associated with any pre-synaptic spikes) at an artificial neuron and adjusting spike-timing dependent plasticity (STDP) accordingly. One example method generally includes receiving, at an artificial neuron, a plurality of pre-synaptic spikes associated with a synapse, tracking a plurality of post-synaptic spikes output by the artificial neuron, and determining at least one of the post-synaptic spikes is associated with none of the plurality of pre-synaptic spikes. According to certain aspects, determining inferring missing post-synaptic events may be accomplished by using a flag, counter, or other variable that is updated on post-synaptic firings. If this post-ghost variable changes between pre-synaptic-triggered adjustments, then the artificial nervous system can determine there was a missing post-synaptic pairing.