IMPLEMENTING DELAYS BETWEEN NEURONS IN AN ARTIFICIAL NERVOUS SYSTEM
    11.
    发明申请
    IMPLEMENTING DELAYS BETWEEN NEURONS IN AN ARTIFICIAL NERVOUS SYSTEM 审中-公开
    在人造神经系统中实施神经元之间的延迟

    公开(公告)号:US20150046381A1

    公开(公告)日:2015-02-12

    申请号:US14084342

    申请日:2013-11-19

    CPC classification number: G06N3/02 G06N3/049

    Abstract: Methods and apparatus are provided for implementing delays in an artificial nervous system. Synaptic and/or axonal delays between a post-synaptic artificial neuron and one or more pre-synaptic artificial neurons may be accounted for at the post-synaptic artificial neuron. One example method for managing delay between neurons in an artificial nervous system generally includes receiving, at a post-synaptic artificial neuron, input current values from one or more pre-synaptic artificial neurons; accounting for delays between the one or more pre-synaptic artificial neurons and the post-synaptic artificial neuron at the post-synaptic artificial neuron; and determining a state of the post-synaptic artificial neuron based at least in part on at least a portion of the input current values, according to the accounting.

    Abstract translation: 提供了用于在人造神经系统中实施延迟的方法和装置。 突触后人工神经元和一个或多个突触前人工神经元之间的突触和/或轴突延迟可以在突触后人造神经元中被考虑。 用于管理人造神经系统中的神经元之间的延迟的一个示例性方法通常包括在突触后人造神经元处接收来自一个或多个突触前人造神经元的输入电流值; 考虑到在突触后人造神经元之间的一个或多个突触前人造神经元和突触后人造神经元之间的延迟; 以及至少部分地基于所述输入当前值的至少一部分来确定所述突触后人造神经元的状态。

    EFFICIENT HARDWARE IMPLEMENTATION OF SPIKING NETWORKS
    12.
    发明申请
    EFFICIENT HARDWARE IMPLEMENTATION OF SPIKING NETWORKS 有权
    SPI网络的有效硬件实现

    公开(公告)号:US20140351190A1

    公开(公告)日:2014-11-27

    申请号:US14267005

    申请日:2014-05-01

    CPC classification number: G06N3/063 G06N3/049 G06N3/08

    Abstract: Certain aspects of the present disclosure support operating simultaneously multiple super neuron processing units in an artificial nervous system, wherein a plurality of artificial neurons is assigned to each super neuron processing unit. The super neuron processing units can be interfaced with a memory for storing and loading synaptic weights and plasticity parameters of the artificial nervous system, wherein organization of the memory allows contiguous memory access.

    Abstract translation: 本公开的某些方面支持在人造神经系统中同时操作多个超级神经元处理单元,其中将多个人造神经元分配给每个超级神经元处理单元。 超神经元处理单元可以与用于存储和加载人造神经系统的突触权重和可塑性参数的存储器接口,其中存储器的组织允许连续的存储器访问。

    SPIKE TIME WINDOWING FOR IMPLEMENTING SPIKE-TIMING DEPENDENT PLASTICITY (STDP)
    13.
    发明申请
    SPIKE TIME WINDOWING FOR IMPLEMENTING SPIKE-TIMING DEPENDENT PLASTICITY (STDP) 审中-公开
    SPIKE时间窗口执行SPIKE-TIMING相关塑料(STDP)

    公开(公告)号:US20140351186A1

    公开(公告)日:2014-11-27

    申请号:US14084302

    申请日:2013-11-19

    CPC classification number: G06N3/08 G06N3/049 G06N3/10

    Abstract: Methods and apparatus are provided for implementing spike-timing dependent plasticity (STDP) using windowing of spikes. One example method for operating an artificial nervous system generally includes recording spike times for a first artificial neuron, recording spike times for a second artificial neuron coupled to the first artificial neuron via a synapse, processing spikes for the second artificial neuron according to a window based at least in part on the spike times for the first artificial neuron, and updating a parameter (e.g., a weight or a delay) of the synapse based on the processing.

    Abstract translation: 提供了使用尖峰窗口来实现尖峰时序相关可塑性(STDP)的方法和装置。 用于操作人造神经系统的一个示例性方法通常包括记录第一人造神经元的尖峰时间,通过突触记录耦合到第一人造神经元的第二人造神经元的尖峰时间,根据基于窗口的第二人造神经元的尖峰 至少部分地基于第一人造神经元的尖峰时间,以及基于该处理更新突触的参数(例如,重量或延迟)。

    TIME SYNCHRONIZATION OF SPIKING NEURON MODELS ON MULTIPLE NODES
    14.
    发明申请
    TIME SYNCHRONIZATION OF SPIKING NEURON MODELS ON MULTIPLE NODES 审中-公开
    SPIKING神经元模型在多个节点上的时间同步

    公开(公告)号:US20150278684A1

    公开(公告)日:2015-10-01

    申请号:US14284275

    申请日:2014-05-21

    CPC classification number: G06N3/049

    Abstract: Certain aspects of the present disclosure support techniques for time synchronization of spiking neuron models that utilize multiple nodes. According to certain aspects, a neural model (e.g., of an artificial nervous system) may be implemented using a plurality of processing nodes, each processing node implementing a neuron model and communicating via the exchange of spike packets carrying information regarding spike information for artificial neurons. A mechanism may be provided for maintaining relative spike-timing between the processing nodes. In some cases, a mechanism may also be provided to alleviate deadlock conditions between the multiple nodes.

    Abstract translation: 本公开的某些方面支持利用多个节点的加标神经元模型的时间同步技术。 根据某些方面,可以使用多个处理节点来实现神经模型(例如,人造神经系统),每个处理节点实施神经元模型并且通过交换携带关于人造神经元的尖峰信息的信息的尖峰分组进行通信 。 可以提供用于在处理节点之间维持相对尖峰定时的机制。 在一些情况下,还可以提供一种机制来减轻多个节点之间的死锁状况。

    IMPLEMENTING A NEURAL-NETWORK PROCESSOR
    16.
    发明申请
    IMPLEMENTING A NEURAL-NETWORK PROCESSOR 审中-公开
    实施神经网络处理器

    公开(公告)号:US20150269480A1

    公开(公告)日:2015-09-24

    申请号:US14300019

    申请日:2014-06-09

    CPC classification number: G06N3/08 G06N3/049 G06N3/063

    Abstract: Certain aspects of the present disclosure support a method and apparatus for implementing kortex neural network processor within an artificial nervous system. According to certain aspects, a plurality of spike events can be generated by a plurality of neuron unit processors of the artificial nervous system, and the spike events can be sent from a subset of the neuron unit processors to another subset of the neuron unit processors via a plurality of synaptic connection processors of the artificial nervous system.

    Abstract translation: 本公开的某些方面支持用于在人造神经系统内实现kortex神经网络处理器的方法和装置。 根据某些方面,可以由人造神经系统的多个神经元单元处理器产生多个尖峰事件,并且尖峰事件可以从神经元单元处理器的子集发送到神经元单元处理器的另一子集,经由 人造神经系统的多个突触连接处理器。

    NEURONAL DIVERSITY IN SPIKING NEURAL NETWORKS AND PATTERN CLASSIFICATION
    17.
    发明申请
    NEURONAL DIVERSITY IN SPIKING NEURAL NETWORKS AND PATTERN CLASSIFICATION 审中-公开
    在神经网络和模式分类中的神经元多样性

    公开(公告)号:US20150170027A1

    公开(公告)日:2015-06-18

    申请号:US14526304

    申请日:2014-10-28

    CPC classification number: G06N3/08 G06N3/049

    Abstract: A method for providing diversity in a set of neurons in a neuron model includes retrieving a set of parameters for the set of neurons. The method also includes perturbing the set of parameters based on a neuron identification value, a level of perturbation for each parameter and/or parameter values.

    Abstract translation: 一种用于在神经元模型中提供神经元集合中的​​分集的方法包括检索该组神经元的一组参数。 该方法还包括基于神经元识别值,每个参数和/或参数值的扰动水平扰乱该组参数。

    CONGESTION AVOIDANCE IN NETWORKS OF SPIKING NEURONS
    18.
    发明申请
    CONGESTION AVOIDANCE IN NETWORKS OF SPIKING NEURONS 审中-公开
    闪电神经网络中的紧急避难

    公开(公告)号:US20150112909A1

    公开(公告)日:2015-04-23

    申请号:US14066612

    申请日:2013-10-29

    CPC classification number: G06N3/04 G06N3/049

    Abstract: A method for managing a neural network includes monitoring a congestion indication in a neural network. The method further includes modifying a spike distribution based on the monitored congestion indication.

    Abstract translation: 一种用于管理神经网络的方法包括监测神经网络中的拥塞指示。 该方法还包括基于所监视的拥塞指示修改尖峰分布。

    POST GHOST PLASTICITY
    19.
    发明申请
    POST GHOST PLASTICITY 有权
    退化塑性

    公开(公告)号:US20150052094A1

    公开(公告)日:2015-02-19

    申请号:US14167752

    申请日:2014-01-29

    CPC classification number: G06N3/049 G06N3/04

    Abstract: Methods and apparatus are provided for inferring and accounting for missing post-synaptic events (e.g., a post-synaptic spike that is not associated with any pre-synaptic spikes) at an artificial neuron and adjusting spike-timing dependent plasticity (STDP) accordingly. One example method generally includes receiving, at an artificial neuron, a plurality of pre-synaptic spikes associated with a synapse, tracking a plurality of post-synaptic spikes output by the artificial neuron, and determining at least one of the post-synaptic spikes is associated with none of the plurality of pre-synaptic spikes. According to certain aspects, determining inferring missing post-synaptic events may be accomplished by using a flag, counter, or other variable that is updated on post-synaptic firings. If this post-ghost variable changes between pre-synaptic-triggered adjustments, then the artificial nervous system can determine there was a missing post-synaptic pairing.

    Abstract translation: 提供了用于推断和计算在人造神经元处丢失的突触后事件(例如,与突触前尖峰之间不相关的突触后尖峰)并相应地调整尖峰时序依赖性可塑性(STDP)的方法和装置。 一个示例性方法通常包括在人造神经元处接收与突触相关联的多个突触前尖峰,跟踪由人造神经元输出的多个突触后尖峰,并且确定突触后尖峰中的至少一个是 与多个突触前尖峰中的任一个相关联。 根据某些方面,确定推断缺失的突触后事件可以通过使用在突触后发射上更新的标志,计数器或其他变量来实现。 如果这个后幽灵变量在突触前触发的调整之间变化,则人造神经系统可以确定缺少突触后配对。

Patent Agency Ranking