EQUIVALENT DELAY BY SHAPING POSTSYNAPTIC POTENTIALS
    1.
    发明申请
    EQUIVALENT DELAY BY SHAPING POSTSYNAPTIC POTENTIALS 审中-公开
    形成潜在潜力的等效延期

    公开(公告)号:US20150220829A1

    公开(公告)日:2015-08-06

    申请号:US14172742

    申请日:2014-02-04

    CPC classification number: G06N3/049

    Abstract: A method of approximating delay for postsynaptic potentials includes receiving a postsynaptic potential. The method further includes filtering the postsynaptic potential to approximate a delayed delivery of the postsynaptic potential.

    Abstract translation: 逼近突触后电位延迟的方法包括接收突触后电位。 该方法还包括过滤突触后电位以近似突触后电位的延迟递送。

    IMPLEMENTING SYNAPTIC LEARNING USING REPLAY IN SPIKING NEURAL NETWORKS
    2.
    发明申请
    IMPLEMENTING SYNAPTIC LEARNING USING REPLAY IN SPIKING NEURAL NETWORKS 审中-公开
    使用复制神经网络实现重复学习

    公开(公告)号:US20150134582A1

    公开(公告)日:2015-05-14

    申请号:US14494681

    申请日:2014-09-24

    CPC classification number: G06N3/08 G06N3/04 G06N3/049

    Abstract: Aspects of the present disclosure relate to methods and apparatus for training an artificial nervous system. According to certain aspects, timing of spikes of an artificial neuron during a training iteration are recorded, the spikes of the artificial neuron are replayed according to the recorded timing, during a subsequent training iteration, and parameters associated with the artificial neuron are updated based, at least in part, on the subsequent training iteration.

    Abstract translation: 本公开的方面涉及用于训练人造神经系统的方法和装置。 根据某些方面,记录在训练迭代期间人造神经元的尖峰时间,在随后的训练迭代期间根据所记录的定时重播人造神经元的尖峰,并且基于人造神经元相关参数进行更新, 至少部分地在随后的训练迭代中。

    METHOD FOR GENERATING COMPACT REPRESENTATIONS OF SPIKE TIMING-DEPENDENT PLASTICITY CURVES
    3.
    发明申请
    METHOD FOR GENERATING COMPACT REPRESENTATIONS OF SPIKE TIMING-DEPENDENT PLASTICITY CURVES 审中-公开
    用于产生SPIKE时序依赖性塑性曲线的紧密表示的方法

    公开(公告)号:US20140310216A1

    公开(公告)日:2014-10-16

    申请号:US14045672

    申请日:2013-10-03

    CPC classification number: G06N3/10 G06N3/049

    Abstract: A method generates compact representations of spike timing-dependent plasticity (STDP) curves. The method includes segmenting a set of data points into different sections. The method further includes representing at least one section as a primitive and storing parameters of the primitive. The primitive can be a polynomial.

    Abstract translation: 一种方法产生尖峰时间依赖可塑性(STDP)曲线的紧凑表示。 该方法包括将一组数据点分割成不同的部分。 该方法还包括将至少一个部分表示为原语并存储原语的参数。 原语可以是多项式。

    METHOD AND APPARATUS FOR EFFICIENT IMPLEMENTATION OF COMMON NEURON MODELS
    4.
    发明申请
    METHOD AND APPARATUS FOR EFFICIENT IMPLEMENTATION OF COMMON NEURON MODELS 有权
    方法和设备有效实施普通神经元模型

    公开(公告)号:US20150248607A1

    公开(公告)日:2015-09-03

    申请号:US14267394

    申请日:2014-05-01

    CPC classification number: G06N3/04 G06N3/0454 G06N3/08 G06N3/10

    Abstract: Certain aspects of the present disclosure support efficient implementation of common neuron models. In an aspect, a first memory layout can be allocated for parameters and state variables of instances of a first neuron model, and a second memory layout different from the first memory layout can be allocated for parameters and state variables of instances of a second neuron model having a different complexity than the first neuron model.

    Abstract translation: 本公开的某些方面支持有效实施普通神经元模型。 在一方面,可以为第一神经元模型的实例的参数和状态变量分配第一存储器布局,并且可以为不同于第一存储器布局的第二存储器布局分配用于第二神经元模型的实例的参数和状态变量 具有与第一神经元模型不同的复杂性。

    METHODS AND APPARATUS FOR IMPLEMENTATION OF GROUP TAGS FOR NEURAL MODELS
    6.
    发明申请
    METHODS AND APPARATUS FOR IMPLEMENTATION OF GROUP TAGS FOR NEURAL MODELS 有权
    用于实施神经模型组标签的方法和装置

    公开(公告)号:US20150088796A1

    公开(公告)日:2015-03-26

    申请号:US14268152

    申请日:2014-05-02

    CPC classification number: G06N3/049 G06N3/0454

    Abstract: Certain aspects of the present disclosure support assigning neurons and/or synapses to group tags where group tags have an associated set of parameters. By using group tags, neurons or synapses in a population can be assigned a group tag. Then, by changing a parameter associated with the group tag, all synapses or neurons in the group may have that parameter changed.

    Abstract translation: 本公开的某些方面支持将神经元和/或突触分配给组标签,其中组标签具有相关联的参数集合。 通过使用组标签,群体中的神经元或突触可以被分配一个组标签。 然后,通过更改与组标签相关联的参数,组中的所有突触或神经元可能会改变该参数。

    DEFINING DYNAMICS OF MULTIPLE NEURONS
    7.
    发明申请
    DEFINING DYNAMICS OF MULTIPLE NEURONS 有权
    定义多个神经元的动力学

    公开(公告)号:US20140310217A1

    公开(公告)日:2014-10-16

    申请号:US14047885

    申请日:2013-10-07

    CPC classification number: G06N3/063 G06N3/049

    Abstract: A method for dynamically setting a neuron value processes a data structure including a set of parameters for a neuron model and determines a number of segments defined in the set of parameters. The method also includes determining a number of neuron types defined in the set of parameters and determining at least one boundary for a first segment.

    Abstract translation: 用于动态设置神经元值的方法处理包括用于神经元模型的一组参数的数据结构并且确定在该组参数中定义的段的数量。 该方法还包括确定在该组参数中定义的神经元类型的数量,并确定第一段的至少一个边界。

    MODULATING PLASTICITY BY GLOBAL SCALAR VALUES IN A SPIKING NEURAL NETWORK
    8.
    发明申请
    MODULATING PLASTICITY BY GLOBAL SCALAR VALUES IN A SPIKING NEURAL NETWORK 审中-公开
    通过全球标量值在SPIKING神经网络中调制塑性

    公开(公告)号:US20150286925A1

    公开(公告)日:2015-10-08

    申请号:US14248211

    申请日:2014-04-08

    CPC classification number: G06N3/049 G06N3/08

    Abstract: A method for maintaining a state variable in a synapse of a neural network includes maintaining a state variable in an axon. The state variable in the axon may be updated based on an occurrence of a first predetermined event. The method also includes updating the state variable in the synapse based on the state variable in the axon and an occurrence of a second predetermined event.

    Abstract translation: 维持神经网络突触状态变量的方法包括维持轴突中的状态变量。 可以基于第一预定事件的发生来更新轴突中的状态变量。 该方法还包括基于轴突中的状态变量和第二预定事件的发生来更新突触中的状态变量。

    NEURONAL DIVERSITY IN SPIKING NEURAL NETWORKS AND PATTERN CLASSIFICATION
    9.
    发明申请
    NEURONAL DIVERSITY IN SPIKING NEURAL NETWORKS AND PATTERN CLASSIFICATION 审中-公开
    在神经网络和模式分类中的神经元多样性

    公开(公告)号:US20150170028A1

    公开(公告)日:2015-06-18

    申请号:US14526317

    申请日:2014-10-28

    CPC classification number: G06N3/08 G06N3/049

    Abstract: A method for pattern recognition in a spiking neural network robust to initial network conditions includes creating a set of diverse neurons in a first layer to increase a diversity in a set of spike timings. An input corresponding to a pattern plus noise is presented at an input layer and represented as spikes. The spikes are received at the first layer and spikes are produced at the first layer based on the received spikes. The method also includes updating a weight of each synapse between an input layer neuron and an output layer neuron based on a spike timing difference between a spike at the input layer neuron and a spike at the output layer neuron. Further, the method includes classifying a spike pattern represented by a set of inter-spike intervals, regardless of noise in the spike pattern.

    Abstract translation: 在对初始网络条件稳健的加标神经网络中的模式识别的方法包括在第一层中创建一组不同的神经元以增加一组尖峰定时的分集。 对应于图案加噪声的输入在输入层处呈现并表示为尖峰。 尖峰在第一层被接收,并且基于接收的尖峰在第一层产生尖峰。 该方法还包括基于输入层神经元的尖峰与输出层神经元的尖峰之间的尖峰定时差来更新输入层神经元和输出层神经元之间的每个突触的权重。 此外,该方法包括分类由一组间穗间隔表示的尖峰图案,而不管尖峰图案中的噪声如何。

Patent Agency Ranking