Abstract:
A method of approximating delay for postsynaptic potentials includes receiving a postsynaptic potential. The method further includes filtering the postsynaptic potential to approximate a delayed delivery of the postsynaptic potential.
Abstract:
Aspects of the present disclosure relate to methods and apparatus for training an artificial nervous system. According to certain aspects, timing of spikes of an artificial neuron during a training iteration are recorded, the spikes of the artificial neuron are replayed according to the recorded timing, during a subsequent training iteration, and parameters associated with the artificial neuron are updated based, at least in part, on the subsequent training iteration.
Abstract:
A method generates compact representations of spike timing-dependent plasticity (STDP) curves. The method includes segmenting a set of data points into different sections. The method further includes representing at least one section as a primitive and storing parameters of the primitive. The primitive can be a polynomial.
Abstract:
Certain aspects of the present disclosure support efficient implementation of common neuron models. In an aspect, a first memory layout can be allocated for parameters and state variables of instances of a first neuron model, and a second memory layout different from the first memory layout can be allocated for parameters and state variables of instances of a second neuron model having a different complexity than the first neuron model.
Abstract:
Values are synchronized across processing blocks in a neural network by encoding spikes in a first processing block with a value to be shared across the neural network. The spikes may be transmitted to a second processing block in the neural network via an interblock interface. The received spikes are decoded in the second processing block so as to generate a value that is synchronized with the value of the first processing block.
Abstract:
Certain aspects of the present disclosure support assigning neurons and/or synapses to group tags where group tags have an associated set of parameters. By using group tags, neurons or synapses in a population can be assigned a group tag. Then, by changing a parameter associated with the group tag, all synapses or neurons in the group may have that parameter changed.
Abstract:
A method for dynamically setting a neuron value processes a data structure including a set of parameters for a neuron model and determines a number of segments defined in the set of parameters. The method also includes determining a number of neuron types defined in the set of parameters and determining at least one boundary for a first segment.
Abstract:
A method for maintaining a state variable in a synapse of a neural network includes maintaining a state variable in an axon. The state variable in the axon may be updated based on an occurrence of a first predetermined event. The method also includes updating the state variable in the synapse based on the state variable in the axon and an occurrence of a second predetermined event.
Abstract:
A method for pattern recognition in a spiking neural network robust to initial network conditions includes creating a set of diverse neurons in a first layer to increase a diversity in a set of spike timings. An input corresponding to a pattern plus noise is presented at an input layer and represented as spikes. The spikes are received at the first layer and spikes are produced at the first layer based on the received spikes. The method also includes updating a weight of each synapse between an input layer neuron and an output layer neuron based on a spike timing difference between a spike at the input layer neuron and a spike at the output layer neuron. Further, the method includes classifying a spike pattern represented by a set of inter-spike intervals, regardless of noise in the spike pattern.
Abstract:
Methods and apparatus are provided for effecting modulation using global scalar values in a spiking neural network. One example method for operating an artificial nervous system generally includes determining one or more updated values for artificial neuromodulators to be used by a plurality of entities in a neuron model and providing the updated values to the plurality of entities.