Abstract:
Certain aspects relate to methods and apparatus for wireless communications, comprising determining to use a reduced paging cycle to page a user equipment (UE) of a first type that supports the reduced paging cycle, the reduced paging cycle having a shorter period relative to a paging cycle used with UEs of a second type which do not support the reduced paging cycle, and paging the UE of the first type in accordance with the reduced paging cycle. Certain aspects relate to methods and apparatus for conveying system information by a base station, comprising broadcasting a first system information common to each cell of a group of cells in an area and broadcasting a second system information that can vary between cells in the group of cells, wherein the second system information is broadcast more frequently than the first system information.
Abstract:
The disclosure relates in some aspects to forbidden area procedures and connection release management for a user terminal (UT). Forbidden area-related procedures include, for example, using a special paging area code (PAC) in conjunction with a forbidden area, defining a location reporting threshold for a UT based on the proximity of the UT to a forbidden area, or using a default paging area code if a service restriction for a UT has ended. Connection release management includes, for example, a UT sending a request to cause the release of a Radio Connection that the UT no longer needs, or a UT sending a Location Indication (e.g., including a flag requesting release of a connection) to release the connection used for location reporting when a UT is done sending the location information and is going to go back to idle mode.
Abstract:
Certain aspects relate to methods and apparatus for conveying system information by a base station, comprising broadcasting a first system information common to each cell of a group of cells in an area and broadcasting a second system information that can vary between cells in the group of cells, wherein the second system information is broadcast more frequently than the first system information.
Abstract:
The disclosure relates in some aspects to managing paging area information for a user terminal (UT) and connection signaling. In some aspects, paging area information is provided for an idle UT by defining a default paging area code (PAC) that is known by the network and the UT. In some aspects, paging area information is communicated via connection signaling. In some aspects, connection signaling may be used to force a UT to invoke an update procedure (e.g., a reconnection).
Abstract:
Methods and apparatus are provided for implementing spike-timing dependent plasticity (STDP) using windowing of spikes. One example method for operating an artificial nervous system generally includes recording spike times for a first artificial neuron, recording spike times for a second artificial neuron coupled to the first artificial neuron via a synapse, processing spikes for the second artificial neuron according to a window based at least in part on the spike times for the first artificial neuron, and updating a parameter (e.g., a weight or a delay) of the synapse based on the processing.
Abstract:
Certain aspects relate to methods and apparatus for discovering whether one or more enhanced capabilities are supported by devices (e.g., user equipment (UE), base station (BS), etc.) in a network. The enhanced capabilities may include, for example, the ability to support certain low latency procedures, enhanced component carrier (eCC) capability, and the like. The devices in the network may perform one or more handover-related procedures (e.g., cell selection/reselection, make-before-break handover, etc.) and/or other procedures (e.g., QoS negotiation, etc.) based, at least in part, on support for the one or more enhanced capabilities.
Abstract:
Certain aspects of the present disclosure support techniques for time synchronization of spiking neuron models that utilize multiple nodes. According to certain aspects, a neural model (e.g., of an artificial nervous system) may be implemented using a plurality of processing nodes, each processing node implementing a neuron model and communicating via the exchange of spike packets carrying information regarding spike information for artificial neurons. A mechanism may be provided for maintaining relative spike-timing between the processing nodes. In some cases, a mechanism may also be provided to alleviate deadlock conditions between the multiple nodes.
Abstract:
A method for managing synapse plasticity in a neural network includes converting a first set of synapses from a plastic synapse type to a fixed synapse type. The method may also include converting a second set of synapses from the fixed synapse type to the plastic synapse type.