Abstract:
An oral-area positioning device is provided in the invention. The oral-area positioning device includes a storage device, a positioning circuit and a calculation circuit. The storage device stores information corresponding to a plurality of oral areas. The positioning circuit obtains a target image from an oral-image extracting device, and obtains a first position estimation result according to the information corresponding to the plurality of oral areas and a first algorithm. The positioning device obtains a second position estimation result at least according to the information corresponding to the plurality of oral areas, a second algorithm and a reference image position of a reference image, wherein the reference image position is one of the oral areas. The calculation circuit generates a third position estimation result according to the first position estimation result and the second position estimation result.
Abstract:
A method for distinguishing plaque and calculus is provided. The method is used in a device and includes the following steps: emitting, by a blue light-emitting diode, blue light to illuminate teeth in an oral cavity, wherein the blue light is used to generate autofluorescence of plaque and calculus on the teeth; sensing, by an image sensor, the autofluorescence of plaque and calculus; and distinguishing, by a processor, a plaque area and a calculus area on the teeth based on the autofluorescence.
Abstract:
An image processing method for a fluorescence reaction region of teeth. The image processing method includes emitting blue light from a light source to illuminate the teeth in a mouth, so that the teeth generate fluorescence; capturing a first teeth image of the teeth by an image capturing unit; separating the first teeth image into a first red-value image, a first green-value image, and a first blue-value image by a processing unit; transforming the first red-value image into a second red-value image by the processing unit using a pixel value transforming function; and combining the second red-value image, the first green-value image, and the first blue-value image into a second teeth image by the processing unit.
Abstract:
A method for improving the efficiency of reconstructing a three-dimensional model is provided. The method includes: dividing a series of different Gray code binary illumination patterns into a plurality of groups; converting binary values of Gray code binary illumination patterns in each group to a plurality of sets of two specific values to generate decimal illumination patterns corresponding to the specific values; overlapping the decimal illumination patterns in each group to a grayscale illumination pattern; using a projector to project each grayscale illumination pattern onto an object from a projection direction; using a camera to capture one or more object images of the object; reverting the object images to non-overlapping Gray code binary images corresponding to the object images; and reconstructing the depth of the object according to the non-overlapping Gray code binary images..
Abstract:
The present disclosure relates to a three dimensional (3D) scanning apparatus. The 3D scanning apparatus includes an image sensor and a processor. The image sensor has a first sensing area and a second sensing area. The first sensing area is configured to capture a first set of images of an object. The second sensing area is configured to capture a second set of images of the object. The processor is configured to establish a first model based on the first set of images and to establish a second model based on the second set of images. The processor is further configured to compare a to correspondence between the first model and the second model.
Abstract:
An image transmission system is provided. The image transmission system includes a transmitting device and a receiving device which are mutually connected via a number of communication links. The transmitting device receives an original image data, and obtains a region of interest (ROI) image data from the original image data in response to an ROI information. The transmitting device further provides two independent process channels respectively processing the original image data and the ROI image data, and respectively outputting the processed original image data and the processed ROI image data via the communication links. The receiving device receives and combines the processed original image data and the ROI image data to obtain a recovered frame image data.