Abstract:
A blower has a blower housing of clamshell construction, including two housing members having a scroll back wall molded with radial draft, an impeller and a motor within the housing, and a static tap connected to the housing. The impeller has a backplate with a backplate back surface region of substantially the same radially converging shape as that of a front surface region of the scroll back wall formed by the radial draft, providing a substantially uniform axial gap between the backplate back surface region and the scroll back wall. The impeller has a ring connected by a skirt to the back plate to define a stepped area behind the ring. The impeller includes impeller blades extending forwardly from the impeller backplate and the ring and back fins extending rearwardly from the ring. The blower has a scroll width of about twice an impeller exhaust width.
Abstract:
A stator assembly for use in an axial flux electric motor includes a plurality of tooth assemblies and a plurality of circumferentially-spaced stator bases that are each coupled to at least one tooth assembly. The stator assembly also includes a plurality of circumferentially-spaced bridge members. Each bridge member is configured to engage a pair of circumferentially adjacent stator bases to apply an axial pre-load force to the pair of stator bases and to create a flux path between the adjacent stator bases.
Abstract:
A blower assembly having a blower housing, an impeller fan within the blower housing, the impeller fan being adapted for rotation about an axis and having a plurality of impeller blades and having an axial length, a motor having a stator and a rotor, the motor having an axial length, the rotor being configured to rotate relative to the stator for rotation about the axis, the rotor and the impeller fan being coupled so that the impeller fan rotates with the rotor about the axis, wherein a ratio of the axial length of the motor to the axial length of the impeller fan is less than 0.3, and a motor support bracket operatively securing the stator to one of the first and second side walls of the blower housing.
Abstract:
A draft inducer blower assembly for use with a water heater has a housing, a motor, and a fan. The housing has an exhaust volute surrounding the fan and a base adapted to be mounted atop a water heater. The housing has an inlet port adapted to receive exhaust gas from the water heater. The fan is connected to the motor for rotation about a rotation axis. The exhaust volute has a cut-off at a cut-off angle relative to the rotation axis. The exhaust volute has an exhaust outlet passageway that extends to an exhaust port. The exhaust port is lower than the top of the exhaust volute.
Abstract:
A blower assembly includes a centrifugal fan and a motor assembly. The centrifugal fan has a plurality of axially extending impeller blades, a first axial end, and an air inlet. The air inlet is at the first axial end of the centrifugal fan. The motor assembly comprises a stator, a rotor, and an air directing surface. The air directing surface is shaped and configured to direct air drawn into the air inlet radially outwardly toward the impeller blades. The air directing surface extends generally along the rotor axis from its first end to its second end. At least a surface region of the air directing surface generally circumscribes the rotor axis and diverges radially outwardly as such surface region of the air directing surface extends away from the first end toward the second end.
Abstract:
A draft inducer blower assembly includes a blower having a fan, a dilution air intake passage, an exhaust gas intake passage, and a discharge passage. The blower is configured to operatively connect to a heater system in a manner to facilitate flow of combustion air into a combustion chamber and to draw dilution air into the blower and to mix the dilution air with the exhaust gases and to facilitate flow of the mixed air and exhaust gases through the vent. The dilution air intake passage is positionable in at least a low flow configuration and a high flow configuration. The dilution air intake passage is more restrictive of intake of dilution air in the low flow configuration than in the high flow configuration.
Abstract:
A blower assembly includes a centrifugal fan and a motor assembly. The centrifugal fan has a plurality of axially extending impeller blades, a first axial end, and an air inlet. The air inlet is at the first axial end of the centrifugal fan. The motor assembly comprises a stator, a rotor, and an air directing surface. The air directing surface is shaped and configured to direct air drawn into the air inlet radially outwardly toward the impeller blades. The air directing surface extends generally along the rotor axis from its first end to its second end. At least a surface region of the air directing surface generally circumscribes the rotor axis and diverges radially outwardly as such surface region of the air directing surface extends away from the first end toward the second end.
Abstract:
A draft inducer blower assembly for use with a water heater has a housing, a motor, and a fan. The housing has an exhaust volute surrounding the fan and a base adapted to be mounted atop a water heater. The base has an inlet port adapted to receive exhaust gas from the water heater. The fan is connected to the motor for rotation about a rotation axis. The exhaust volute has a cut-off at a cut-off angle relative to the rotation axis. The exhaust volute has an exhaust outlet passageway that extends to an exhaust port. The exhaust port is lower than the top of the exhaust volute.
Abstract:
A blower assembly is configured for use with a gas-operated heater having a burner and an exhaust port. The blower assembly has a blower and a sensor. The blower is configured to operate at two or more speeds and is configured to operatively connect to the burner in a manner to facilitate flow of combustion air into the burner and to facilitate flow of exhaust through the exhaust port. The sensor is configured to be sensitive to pressure of exhaust downstream of the blower. The sensor is operatively connected to the blower in a manner such that the blower will change speeds if said pressure exceeds a threshold pressure.
Abstract:
A grounding device for an electric machine, having a rotating component and a stationary component, includes a core fabricated from a non-conductive material and a plurality of conductive fibers coupled to the core and extending therefrom. The plurality of conductive fibers are configured to electrically couple the rotating component with the stationary component such that an electrostatic charge on the rotating component is directed through the plurality of conductive fibers to the stationary component.