Abstract:
In certain embodiments, a control system includes a model-less controller configured to control operation of a plant or process. The control system also includes a model-based controller that includes a model of the plant or process being controlled by the model-less controller. The model-based controller is configured to modify parameters of the model-less controller.
Abstract:
In certain embodiments, a control/optimization system includes an instantiated model object stored in memory on a model server. The model object includes a model of a plant or process being controlled. The model object comprises an interface that precludes the transmission of proprietary information via the interface. The control/optimization system also includes a decision engine software module stored in memory on a decision support server. The decision engine software module is configured to request information from the model object through a communication network via a communication protocol that precludes the transmission of proprietary information, and to receive the requested information from the model object through the communication network via the communication protocol.
Abstract:
A method for operating an industrial automation system may involve receiving, via a first module of a plurality of modules in a control system, an indication that an error between a measurement associated with a target variable that corresponds with at least a portion of the industrial automation system and a modeled value for the target variable. The method may then involve determining, via the first module, whether the error is within a first range of values and retraining a model used to generate the modeled value for the target variable based on a portion of a plurality of sets of data points acquired via a plurality of sensors disposed in the industrial automation system in response to the error being within the first range of values.
Abstract:
The embodiments described herein include one embodiment that provides a control method that includes connecting a first controller to a control system; receiving control system configuration data from a database, in which the configuration data comprises holistic state data of a second controller in the control system; and configuring operation of the first controller based at least in part on the configuration data received.
Abstract:
The embodiments described herein include one embodiment that provides a control method that includes connecting a first controller to a control system; receiving control system configuration data from a database, in which the configuration data comprises holistic state data of a second controller in the control system; and configuring operation of the first controller based at least in part on the configuration data received.
Abstract:
The embodiments described herein include one embodiment that provides a control method that includes connecting a first controller to a control system; receiving control system configuration data from a database, in which the configuration data comprises holistic state data of a second controller in the control system; and configuring operation of the first controller based at least in part on the configuration data received.
Abstract:
An industrial automation system may include an automation device and a control system communicatively coupled to the automation device. The control system may include a first module of a number of modules, such that the first module may receive an indication of a target variable associated with the industrial automation device. The first module may then receive parameters associated with the target variable, identify a portion of data points associated with controlling the target variable with respect to the parameters, generate a model of each data point of the portion over time with respect to the parameters based on the data points, determine functions associated with the model. The functions represent one or more relationships between the each data point of the portion with respect to controlling the target variable. The first module may then adjust one or more operations of the automation device based on the functions.
Abstract:
In certain embodiments, a control/optimization system includes an instantiated model object stored in memory on a model server. The model object includes a model of a plant or process being controlled. The model object comprises an interface that precludes the transmission of proprietary information via the interface. The control/optimization system also includes a decision engine software module stored in memory on a decision support server. The decision engine software module is configured to request information from the model object through a communication network via a communication protocol that precludes the transmission of proprietary information, and to receive the requested information from the model object through the communication network via the communication protocol.
Abstract:
The embodiments described herein include one embodiment that provides a control method that includes connecting a first controller to a control system; receiving control system configuration data from a database, in which the configuration data comprises holistic state data of a second controller in the control system; and configuring operation of the first controller based at least in part on the configuration data received.
Abstract:
A method for operating an industrial automation system may include receiving, via a first module of a plurality of modules in a control system, a plurality of datasets via at least a portion of the plurality of modules. The plurality datasets may include raw values without context regarding the plurality datasets. The method may then include identifying a subset of the plurality of datasets that influences a value of a target variable by analyzing the data without regard to the context, modeling a behavior of the target variable over time based on the subset of the plurality of datasets, and adjusting one or more operations of an automation device based on the model.