摘要:
A method of controlling an amount of liquid in a fuel cell includes increasing the oxygen utilization within the fuel cell to increase heat. The heat reduces the amount of liquid in the fuel cell. A disclosed example method includes decreasing a supply of air to the fuel cell to lower a fuel cell voltage by increasing the oxygen utilization. The example method includes maintaining an essentially electrical current density while decreasing the supply of air.
摘要:
Performance of a fuel cell stack (12) is recovered following long term decay by connecting (51) an auxiliary load (50) to the fuel cell while shutting off one or more of oxidant inlet valve (27a), oxidant pressure regulating valve (28a) or oxidant pump (26), which all may be achieved with a controller (46), to cyclically starve the cathode of oxidant so that it achieves hydrogen potential, e.g., less than 0.1 volts, for on the order of tens of seconds, repetitively, such as at every 10 or 20 seconds, while the auxiliary load remains connected, initially drawing 10 to 100 mASC, for example. Complete rejuvenation is obtained following 1800 or more cycles over a period of five or more hours.
摘要:
The invention is a hydrogen passivation shut down system for a fuel cell power plant (10). An anode flow path (24) is in fluid communication with an anode catalyst (14) for directing hydrogen fuel to flow adjacent to the anode catalyst (14), and a cathode flow path (38) is in fluid communication with a cathode catalyst (16) for directing an oxidant to flow adjacent to the cathode catalyst (16) of a fuel cell (12). Hydrogen fuel is permitted to transfer between the anode flow path (24) and the cathode flow path (38). A hydrogen reservoir (66) is secured in fluid communication with the anode flow path (24) for receiving and storing hydrogen during fuel cell (12) operation, and for releasing the hydrogen into fuel cell (12) whenever the fuel cell (12) is shut down.
摘要:
The invention is a start up system and method for a fuel cell power plant (10) using a purging of the cathode flow field (38) with a hydrogen rich reducing fluid fuel to minimize corrosion of the cathode electrode (16). The method for starting up the shut down fuel cell power plant (10) includes the steps of: a. purging the cathode flow field (38) with the reducing fluid fuel; b. then, directing the reducing fluid fuel to flow through an anode flow field (28); c. next, terminating flow of the fuel through the cathode flow field (38) and directing an oxygen containing oxidant to flow through the cathode flow field (38); and, d. finally, connecting a primary load (70) to the fuel cell (12) so that electrical current flows from the fuel cell (12) to the primary load (70).
摘要:
The invention is a system and method for shutting down a fuel cell power plant having at least one fuel cell, a primary load, and an auxiliary load that receive electrical current from electrodes of the fuel cell through an external circuit. Shutting down the plant includes disconnecting the primary load; terminating flow of the oxidant through a cathode flow field; connecting the auxiliary load to consume oxygen within the fuel cell; disconnecting the auxiliary load; connecting a power supply to the fuel cell electrodes to increase a concentration of hydrogen within the cathode flow field; and, then, decreasing or eliminating flow of hydrogen into an anode flow field after an equilibrium gas concentration of at least 0.0001% hydrogen, balance fuel cell inert gases, is achieved in both the anode and cathode flow fields.
摘要:
A fuel cell includes a water transport plate providing a water flow field. The water flow field includes water having gas. A vent is in fluid communication with the water flow field. The vent includes a membrane that obstructs flow of water past the membrane while permitting the flow of gas past the membrane. The membrane can include a pore size between approximately 0.1μ to 10.0μ, which enables gases to pass through the pores while blocking water. The membrane can be hydrophobic, for example, Teflon, to prevent the passage of water through the membrane. A hydrophobic fluid can also be arranged on the membrane to act as a check valve.
摘要:
A fuel cell stack (32) includes a plurality of fuel cells in which each fuel cell is formed between a pair of conductive, porous, substantially hydrophilic plates (17) having oxidant reactant gas flow field channels (12-15) on a first surface and fuel reactant gas flow field channels (19, 19a) on a second surface opposite to the first surface, each ˜f the plates being separated from a plate adjacent thereto by a unitized electrode assembly (20) including a cathode electrode (22), having a gas diffusion layer (GDL) an anode electrode (23) having a GDL with catalyst between each GDL and a membrane (21) disposed therebetween. Above the stack is a condenser (33} having tubes (34) that receive coolant air (39, 40} to condense water vapor out of oxidant exhaust in a chamber (43). Inter-cell wicking strips (26) receive condensate and conduct it along the length of the stack to all cells. In-cell wicking strips (1G, 1 ˜a) on one or both surfaces conduct the water from the inter-cell wicking strips downwardly along the entire planform of each cell. Reactant air is provided to an air inlet manifold (47) through an air inlet conduit (48) from an air pump (49).
摘要:
A fuel cell stack (32) includes a plurality of fuel cells in which each fuel cell is formed between a pair of conductive, porous, substantially hydrophilic plates (17) having oxidant reactant gas flow field channels (12-15) on a first surface and fuel reactant gas flow field channels (19, 19a) on a second surface opposite to the first surface, each ˜f the plates being separated from a plate adjacent thereto by a unitized electrode assembly (20) including a cathode electrode (22), having a gas diffusion layer (GDL) an anode electrode (23) having a GDL with catalyst between each GDL and a membrane (21) disposed therebetween. Above the stack is a condenser (33} having tubes (34) that receive coolant air (39, 40) to condense water vapor out of oxidant exhaust in a chamber (43). Inter-cell wicking strips (26) receive condensate and conduct it along the length of the stack to all cells. In-cell wicking strips (1G. 1˜a) on one or both surfaces conduct the water from the inter-cell wicking strips downwardly along the entire planform of each cell. Reactant air is provided to an air inlet manifold (47) through an air inlet conduit (48) from an air pump (49).
摘要:
The invention is a system (10) and method for determining a gas composition within a fuel cell (12) of a shut down fuel cell power plant. The system (10) includes at least one fuel cell (12), a sensor circuit (86) secured in electrical connection with the fuel cell (12), wherein the circuit (86) includes a power source (88), a voltage-measuring device (90), and a sensor circuit switch (92). The circuit (86) is secured so that the power source (88) may selectively deliver a pre-determined sensing current to the fuel cell (12) for a pre-determined sensing duration. The system (10) selectively admits the reducing fluid into an anode flow field (28) of the cell (12) whenever the sensor circuit (86) senses that a shut down monitoring voltage of the fuel cell (12) is the same as or exceeds a calibrated sensor voltage limit of the fuel cell (12).
摘要:
A fuel cell power plant (10) having a fuel concentration sensor cell (54) is disclosed for detecting a concentration of fuel in a fuel cell (12) of the plant (10). A portion of a fuel exhaust stream is directed to flow through the sensor cell (54) adjacent to a membrane electrode assembly (60) of the sensor cell (54). A power circuit (62) may or may not deliver an electrical current to the cell (12), while changes in voltage across the cell (12) that are proportional to changes in hydrogen concentrations within the fuel exhaust stream are detected by a detector (68) which communicates the changes to a controller (108) for controlling a rate of fuel supply to the fuel cell (12). A porous sensor water transport plate (74) cools, humidifies delivers and removes liquid from the sensor cell (12).