Abstract:
Disclosed examples include power conversion systems, methods and computer readable mediums to operate an inverter to drive a motor load through an intervening filter, by computing a speed error value according to a speed reference value and a speed feedback value, computing a torque reference value according to the speed error value, computing a motor current reference value according to the torque reference value, compensating the motor current reference value according to capacitor currents of the output filter using a transfer function representing an output current to input current amplitude vs. frequency behavior of the output filter and the motor load, and controlling the inverter according to the inverter output current reference value.
Abstract:
Methods and systems are presented for closed loop motor speed and torque control without a sensor at the motor, in which configuration parameters are received from a user interface to define operating characteristics of a filter, a transformer, a cable, and the motor coupled with the output of a motor drive, and an object model of the motor drive is configured according to the filter, transformer, cable and motor configuration parameters to facilitate sensorless closed loop motor speed and/or torque control.
Abstract:
Disclosed examples include motor drive power conversion systems with an inverter, as well as a controller methods to drive a motor in which output filter capacitor currents are computed and used to compensate the motor control in consideration of damping resistance values of an output filter.
Abstract:
Disclosed examples include motor drive power conversion systems with an inverter, as well as a controller methods to drive a motor in which output filter capacitor currents are computed and used to compensate the motor control in consideration of damping resistance values of an output filter.
Abstract:
Disclosed examples include power conversion systems, methods and computer readable mediums to operate an inverter to drive a motor load through an intervening filter, by computing a speed error value according to a speed reference value and a speed feedback value, computing a torque reference value according to the speed error value, computing a motor current reference value according to the torque reference value, compensating the motor current reference value according to capacitor currents of the output filter using a transfer function representing an output current to input current amplitude vs. frequency behavior of the output filter and the motor load, and controlling the inverter according to the inverter output current reference value.
Abstract:
Disclosed examples include methods, computer readable mediums and motor drive power conversion systems for sensorless speed control of a motor driven by an inverter through an intervening filter, a transformer and a motor cable, in which sensorless vector control is used to regulate the motor speed based on a speed feedback value computed according to voltage or current values associated with the motor drive using an observer having formulas and impedance parameters of the filter, the transformer, the motor cable and the motor.
Abstract:
Power converters and methods are presented for driving an AC load connected through an intervening filter circuit, in which at least one filter current or voltage signal or value is determined according to feedback signals or values representing an output parameter at an AC output of the power converter, and AC electrical output power is generated at the AC output based at least partially on the at least one filter current or voltage signal or value.