Snippet extraction and ranking
    11.
    发明授权
    Snippet extraction and ranking 有权
    片段提取和排名

    公开(公告)号:US08954425B2

    公开(公告)日:2015-02-10

    申请号:US12796345

    申请日:2010-06-08

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30867 G06F17/30241

    摘要: Described herein is a technology that facilitates efficient automated mining of topic-related aspects of user-generated content based on automated analysis of the user-generated content. Locations are automatically learned based on dividing documents into document segments, and decomposing the segments into local topics and global topics. Techniques are described that facilitate automatically extracting snippets. These techniques include, for example, computer annotating travelogues with learned tags and images, performing topic learning to obtain an interest model, performing location matching based on the interest model, calculating geographic and semantic relevance scores, ranking snippets based on the geographic and semantic relevance scores, and searching snippets with a “location+context term” query.

    摘要翻译: 这里描述了一种技术,其有助于基于对用户生成的内容的自动化分析来有效地自动挖掘用户生成的内容的主题相关方面。 根据将文档分割成文档段,自动学习位置,并将段分解为本地主题和全局主题。 描述了便于自动提取代码段的技术。 这些技术包括例如计算机注释具有学习标签和图像的旅行记录,执行主题学习以获得兴趣模型,基于兴趣模型执行位置匹配,计算地理和语义相关性分数,基于地理和语义相关性来排序片段 分数和搜索带有“位置+上下文术语”查询的片段。

    Snippet Extraction and Ranking
    12.
    发明申请
    Snippet Extraction and Ranking 有权
    代码段提取和排名

    公开(公告)号:US20110302162A1

    公开(公告)日:2011-12-08

    申请号:US12796345

    申请日:2010-06-08

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30867 G06F17/30241

    摘要: Described herein is a technology that facilitates efficient automated mining of topic-related aspects of user-generated content based on automated analysis of the user-generated content. Locations are automatically learned based on dividing documents into document segments, and decomposing the segments into local topics and global topics. Techniques are described that facilitate automatically extracting snippets. These techniques include, for example, computer annotating travelogues with learned tags and images, performing topic learning to obtain an interest model, performing location matching based on the interest model, calculating geographic and semantic relevance scores, ranking snippets based on the geographic and semantic relevance scores, and searching snippets with a “location+context term” query.

    摘要翻译: 这里描述了一种技术,其有助于基于对用户生成的内容的自动化分析来有效地自动挖掘用户生成的内容的主题相关方面。 根据将文档分割成文档段,自动学习位置,并将段分解为本地主题和全局主题。 描述了便于自动提取代码段的技术。 这些技术包括例如计算机注释具有学习标签和图像的旅行记录,执行主题学习以获得兴趣模型,基于兴趣模型执行位置匹配,计算地理和语义相关性分数,基于地理和语义相关性来排序片段 分数和搜索带有“位置+上下文术语”查询的片段。

    LEARNING TO RANK LOCAL INTEREST POINTS
    13.
    发明申请
    LEARNING TO RANK LOCAL INTEREST POINTS 审中-公开
    学习排名本地兴趣点

    公开(公告)号:US20120301014A1

    公开(公告)日:2012-11-29

    申请号:US13118282

    申请日:2011-05-27

    IPC分类号: G06K9/62 G06K9/46

    CPC分类号: G06K9/4676 G06F16/583

    摘要: Tools and techniques for learning to rank local interest points from images using a data-driven scale-invariant feature transform (SIFT) approach termed “Rank-SIFT” are described herein. Rank-SIFT provides a flexible framework to select stable local interest points using supervised learning. A Rank-SIFT application detects interest points, learns differential features, and implements ranking model training in the Gaussian scale space (GSS). In various implementations a stability score is calculated for ranking the local interest points by extracting features from the GSS and characterizing the local interest points based on the features being extracted from the GSS across images containing the same visual objects.

    摘要翻译: 本文描述了使用称为Rank-SIFT的数据驱动的尺度不变特征变换(SIFT)方法学习从图像对本地兴趣点进行排名的工具和技术。 Rank-SIFT提供了一个灵活的框架,使用监督学习选择稳定的本地兴趣点。 Rank-SIFT应用程序检测兴趣点,学习差异特征,并实现高斯尺度空间(GSS)中的排名模型训练。 在各种实施方式中,通过从GSS提取特征并基于从包含相同视觉对象的图像从GSS提取的特征来表征局部兴趣点来计算稳定性分数以对局部兴趣点进行排名。

    Robust multi-view face detection methods and apparatuses
    14.
    发明授权
    Robust multi-view face detection methods and apparatuses 有权
    强大的多视角人脸检测方法和装置

    公开(公告)号:US07689033B2

    公开(公告)日:2010-03-30

    申请号:US10621260

    申请日:2003-07-16

    CPC分类号: G06K9/4614 G06K9/00228

    摘要: Face detection techniques are provided that use a multiple-stage face detection algorithm. An exemplary three-stage algorithm includes a first stage that applies linear-filtering to enhance detection performance by removing many non-face-like portions within an image, a second stage that uses a boosting chain that is adopted to combine boosting classifiers within a hierarchy “chain” structure, and a third stage that performs post-filtering using image pre-processing, SVM-filtering and color-filtering to refine the final face detection prediction. In certain further implementations, the face detection techniques include a two-level hierarchy in-plane pose estimator to provide a rapid multi-view face detector that further improves the accuracy and robustness of face detection.

    摘要翻译: 提供了使用多级面部检测算法的人脸检测技术。 示例性的三阶段算法包括第一阶段,其通过去除图像内的许多非面部部分来应用线性滤波以增强检测性能;第二阶段,其使用用于组合层级内的增强分类器的升压链 “链”结构,以及使用图像预处理,SVM滤波和颜色滤波来完成最终面部检测预测来执行后置滤波的第三阶段。 在某些进一步的实施方式中,面部检测技术包括两层次平面姿态估计器,以提供进一步提高面部检测的准确性和鲁棒性的快速多视角面部检测器。

    Accelerated face detection based on prior probability of a view
    15.
    发明申请
    Accelerated face detection based on prior probability of a view 有权
    基于先验概率的加速面部检测

    公开(公告)号:US20070053585A1

    公开(公告)日:2007-03-08

    申请号:US11142817

    申请日:2005-05-31

    IPC分类号: G06K9/62 G06K9/46 G06K9/00

    CPC分类号: G06K9/00248

    摘要: A method and system for detecting faces at different views within images that allocates the computational effort based on a prior probability associated with a view is provided. A face detection system determines whether an image contains a face using detectors that are adapted to detect faces at various views and a filter that filters out windows of the image that are provided to a detector based on a prior probability associated with the view of the detector. Each view has an associated prior probability that a face from a collection of real-life home photographs will be at that view. The face detection system allocates increasing computational effort to a detector as the prior probability of its view increases.

    摘要翻译: 提供了一种用于在图像内的不同视图处检测面部的方法和系统,该方法和系统基于与视图相关联的先验概率来分配计算量。 面部检测系统基于与检测器的视图相关联的先验概率来确定图像是否包含使用适于检测各种视图的面部的检测器的面部和滤波器,该滤波器滤除提供给检测器的图像的窗口 。 每个视图具有相关联的先前概率,即来自现实家庭照片的集合的面部将在该视图中。 面部检测系统随着其视图的先前概率增加而将增加的计算量分配给检测器。

    Mining Topic-Related Aspects From User Generated Content
    16.
    发明申请
    Mining Topic-Related Aspects From User Generated Content 有权
    从用户生成的内容中挖掘与主题相关的方面

    公开(公告)号:US20110302124A1

    公开(公告)日:2011-12-08

    申请号:US12796303

    申请日:2010-06-08

    IPC分类号: G06N5/02 G06F17/30

    CPC分类号: G06F17/30707

    摘要: Described herein is a technology that facilitates efficient automated mining of topic-related aspects of user generated content based on automated analysis of the user generated content. Locations are automatically learned based on dividing documents into document segments, and decomposing the segments into local topics and global topics. Techniques described herein include, for example, computer annotating travelogues with learned tags, performing topic learning to obtain an interest model, and performing location matching based on the interest model.

    摘要翻译: 这里描述了一种技术,其有助于基于对用户生成的内容的自动化分析来有效地自动挖掘用户生成的内容的主题相关方面。 根据将文档分割成文档段,自动学习位置,并将段分解为本地主题和全局主题。 本文描述的技术包括例如计算机注释具有学习标签的旅行记录,执行主题学习以获得兴趣模型,以及基于兴趣模型执行位置匹配。

    Accelerated face detection based on prior probability of a view
    17.
    发明授权
    Accelerated face detection based on prior probability of a view 有权
    基于先验概率的加速面部检测

    公开(公告)号:US07590267B2

    公开(公告)日:2009-09-15

    申请号:US11142817

    申请日:2005-05-31

    IPC分类号: G06K9/00 G06K9/36 H04N9/04

    CPC分类号: G06K9/00248

    摘要: A method and system for detecting faces at different views within images that allocates the computational effort based on a prior probability associated with a view is provided. A face detection system determines whether an image contains a face using detectors that are adapted to detect faces at various views and a filter that filters out windows of the image that are provided to a detector based on a prior probability associated with the view of the detector. Each view has an associated prior probability that a face from a collection of real-life home photographs will be at that view. The face detection system allocates increasing computational effort to a detector as the prior probability of its view increases.

    摘要翻译: 提供了一种用于在图像内的不同视图处检测面部的方法和系统,该方法和系统基于与视图相关联的先验概率来分配计算量。 面部检测系统基于与检测器的视图相关联的先验概率来确定图像是否包含使用适于检测各种视图的面部的检测器的面部和滤波器,该滤波器滤除提供给检测器的图像的窗口 。 每个视图具有相关联的先前概率,即来自现实家庭照片的集合的面部将在该视图中。 面部检测系统随着其视图的先前概率增加而将增加的计算量分配给检测器。

    Mining topic-related aspects from user generated content
    18.
    发明授权
    Mining topic-related aspects from user generated content 有权
    从用户生成的内容中挖掘主题相关的方面

    公开(公告)号:US08458115B2

    公开(公告)日:2013-06-04

    申请号:US12796303

    申请日:2010-06-08

    IPC分类号: G06F9/44 G06N7/02 G06N7/06

    CPC分类号: G06F17/30707

    摘要: Described herein is a technology that facilitates efficient automated mining of topic-related aspects of user generated content based on automated analysis of the user generated content. Locations are automatically learned based on dividing documents into document segments, and decomposing the segments into local topics and global topics. Techniques described herein include, for example, computer annotating travelogues with learned tags, performing topic learning to obtain an interest model, and performing location matching based on the interest model.

    摘要翻译: 这里描述了一种技术,其有助于基于对用户生成的内容的自动化分析来有效地自动挖掘用户生成的内容的主题相关方面。 根据将文档分割成文档段,自动学习位置,并将段分解为本地主题和全局主题。 本文描述的技术包括例如计算机注释具有学习标签的旅行记录,执行主题学习以获得兴趣模型,以及基于兴趣模型执行位置匹配。

    Robust multi-view face detection methods and apparatuses
    19.
    发明申请
    Robust multi-view face detection methods and apparatuses 有权
    强大的多视角人脸检测方法和装置

    公开(公告)号:US20050013479A1

    公开(公告)日:2005-01-20

    申请号:US10621260

    申请日:2003-07-16

    IPC分类号: G06K9/00 G06K9/62

    CPC分类号: G06K9/4614 G06K9/00228

    摘要: Face detection techniques are provided that use a multiple-stage face detection algorithm. An exemplary three-stage algorithm includes a first stage that applies linear-filtering to enhance detection performance by removing many non-face-like portions within an image, a second stage that uses a boosting chain that is adopted to combine boosting classifiers within a hierarchy “chain” structure, and a third stage that performs post-filtering using image pre-processing, SVM-filtering and color-filtering to refine the final face detection prediction. In certain further implementations, the face detection techniques include a two-level hierarchy in-plane pose estimator to provide a rapid multi-view face detector that further improves the accuracy and robustness of face detection.

    摘要翻译: 提供了使用多级面部检测算法的人脸检测技术。 示例性的三阶段算法包括第一阶段,其通过去除图像内的许多非面部部分来应用线性滤波以增强检测性能;第二阶段,其使用用于组合层级内的增强分类器的升压链 “链”结构,以及使用图像预处理,SVM滤波和颜色滤波来完成最终面部检测预测来执行后置滤波的第三阶段。 在某些进一步的实施方式中,面部检测技术包括两层次平面姿态估计器,以提供进一步提高面部检测的准确性和鲁棒性的快速多视角面部检测器。