Abstract:
A pressure sensor includes a base having a high-pressure contact portion, and a diaphragm positioned over the base and having an external top surface opposite the base. The external top surface is defined within a closed perimeter and external side surfaces extend down from an entirety of the closed perimeter toward the base. A high-pressure contact portion of the diaphragm is aligned with and separated by a gap from the high-pressure contact portion of the base. A sensing element is coupled to the diaphragm and provides an output based on changes to the diaphragm. When a hydrostatic pressure load above a threshold value is applied to the entire external top surface and external side surfaces of the diaphragm, the hydrostatic pressure load causes the high-pressure contact portion of the diaphragm to contact the high-pressure contact portion of the base.
Abstract:
A differential pressure sensor for sensing a differential pressure of a process fluid, includes a sensor body having a sensor cavity formed therein with a cavity profile. A diaphragm in the sensor cavity deflects in response to an applied differential pressure. The diaphragm has a diaphragm profile. A gap formed between the cavity profile and the diaphragm profile changes as a function of the differential pressure. At least one of the cavity profile and diaphragm profile changes as a function of a line pressure to compensate for changes in the gap due to deformation of the sensor body from the line pressure.
Abstract:
A process variable transmitter for sensing a process variable of an industrial process includes a process variable sensor configured to sense a current process variable of the industrial process. Measurement circuitry is configured to compensate the sensed process variable as a function of at least one previously sensed process variable characterized by a Hysteron basis function model. Output circuitry provides a transmitter output related to the compensated sensed process variable.