Abstract:
A power voltage generating apparatus supplies a power voltage to a plurality of pixel circuits of a display apparatus. The power voltage generating apparatus includes: a high voltage converter to generate a high voltage; a low voltage converter to generate a low voltage; a switching circuit to alternately output the high voltage and the low voltage at a power voltage terminal as the power voltage; and a discharging unit coupled to the power voltage terminal and configured to discharge the power voltage terminal until a voltage output is converted from the high voltage to the low voltage by using the switching circuit.
Abstract:
A display device includes a display panel, a power supply unit, a first current measuring unit, and an overcurrent preventing switch. The power supply unit provides a power supply voltage to the display panel. The first current measuring unit is connected to a first path for providing the power supply voltage from the power supply unit to the display panel and measures a first current flowing through the first path. The overcurrent preventing switch is connected in parallel with the first current measuring unit and selectively forms a detour path for the first path according to an amount of the first current such that at least a portion of the first current flows through the detour path.
Abstract:
A display device includes a data driver configured to generate a data signal based on a data voltage; a display panel configured to be driven based on a first power supply voltage and the data signal; a timing controller configured to control operations of the data driver and the display panel and configured to generate a ready signal indicating a power supply timing; a first voltage regulator configured to generate the first power supply voltage based on a first input voltage and a first enable signal; a second voltage regulator configured to generate the data voltage based on the first input voltage and a second enable signal; and a power sequence controller configured to generate the first enable signal based on the ready signal and the data voltage and configured to generate the second enable signal based on the ready signal and the first power supply voltage.
Abstract:
A pixel circuit includes a scan transistor connected between a data line and a first node and being configured to receive a scan signal, an emission control transistor connected between a first power supply and a second node and being configured to receive an emission control signal, a driving transistor connected between the second node and a third node and being connected to the first node, an initialize transistor being configured to receive an initialization signal, a storage capacitor connected between the first node and the third node; an organic light emitting diode connected between the third node and a second power supply, a charge share capacitor connected between a fourth node and the second power supply; and a charge share transistor configured to connect the charge share capacitor to the storage capacitor, the charge share transistor being configured to receive a charge share control signal.
Abstract:
A protection circuit includes: a temperature measuring unit which compares a voltage corresponding to a temperature at each of a plurality of sense points with a reference voltage, and generates a measurement result based on a result of comparison; a controller which generates a plurality of current control signals, which controls currents of a plurality of channels corresponding to the plurality of sense points, respectively, based on the measurement result from the temperature measuring unit; and a plurality of phase converter which outputs the currents of the plurality of channels based on the plurality of current control signals, wherein the controller generates the plurality of current control signals until the voltage corresponding to the temperature of each of the plurality of sense points is substantially equal to the reference voltage.
Abstract:
A display device includes a display panel, a power supply unit, a first current measuring unit, and an overcurrent preventing switch. The power supply unit provides a power supply voltage to the display panel. The first current measuring unit is connected to a first path for providing the power supply voltage from the power supply unit to the display panel and measures a first current flowing through the first path. The overcurrent preventing switch is connected in parallel with the first current measuring unit and selectively forms a detour path for the first path according to an amount of the first current such that at least a portion of the first current flows through the detour path.