Abstract:
A system includes a data processing system including a processor operatively coupled to a memory. The processor is configured to receive a first dataset indicative of spectral information regarding photons received from a first detector of a formation density tool. The processor is configured to receive a second dataset indicative of a total count rate of photons from a second detector of the formation density tool. The processor is configured to determine physical characteristics of a geological formation based on the spectral information and the total count rate. The processor is configured to display the physical characteristics of the geological formation in a display.
Abstract:
A well-logging device may include a housing to be positioned within a larger borehole of a subterranean formation and thereby define a stand-off distance with respect to the larger borehole. The well-logging device may also include at least one radiation source carried by the housing to direct radiation into the subterranean formation, and radiation detectors carried by the housing in azimuthally spaced relation to detect radiation from the subterranean formation. The well-logging device may further include a controller to cooperate with the radiation detectors to determine at least one property of the subterranean formation corrected for the stand-off distance.
Abstract:
A downhole tool is provided with a neutron generator configured to emit neutrons into a geological formation. The downhole tool includes one or more neutron detectors configured to detect neutrons that return to the downhole tool after interacting with the geological formation. The downhole tool also includes one or more gamma ray detectors configured to detect gamma rays from the geological formation that form when neutrons are inelastically scattered by the geological formation. Measurements from a combination of detectors of at least one of the one or more neutron detectors and at least one of the one or more gamma ray detectors are used to determine formation density. A first formation density determined using a first combination of detectors is used to compensate a second formation density determined using a second combination of detectors.
Abstract:
Systems, methods, and devices are provided for radiation detector windows that have an improved shape or density and/or provide collimation of radiation that passes through. Thus, a radiation-based logging tool may include a source that emits radiation and a detector that detects, through a detector window, a first portion of the radiation scattered off of a geological formation. The detector window may include a dome having a first surface and a second surface and a support structure that provides support for the dome. The detector window may include a window insert that shields the detector from a second portion of the radiation.
Abstract:
A system includes a data processing system including a processor operatively coupled to a memory. The processor is configured to receive a first dataset indicative of spectral information regarding photons received from a first detector of a formation density tool. The processor is configured to receive a second dataset indicative of a total count rate of photons from a second detector of the formation density tool. The processor is configured to determine physical characteristics of a geological formation based on the spectral information and the total count rate. The processor is configured to display the physical characteristics of the geological formation in a display.
Abstract:
The techniques and device provided herein relate to regulating a source generator in X-ray based measurement for downhole applications. A source stream of photons is produced, via a generator of an X-ray system of a logging tool. A direct channel allows for the passage of a stream of photons, where a high energy filter filters a low energy part of the stream of photons. The resultant stream is measured by a reference detector to identify a high energy peak in a spectrum measurement derived based upon the resultant photon stream. From there, a normalized difference between a plurality of windows of the high energy peak is determined and subsequent output of the generator is based upon the normalized difference.
Abstract:
The techniques and device provided herein relate to regulating a source generator in X-ray based measurement for downhole applications. A source stream of photons is produced, via a generator of an X-ray system of a logging tool. A direct channel allows for the passage of a stream of photons, where a high energy filter filters a low energy part of the stream of photons. The resultant stream is measured by a reference detector to identify a high energy peak in a spectrum measurement derived based upon the resultant photon stream. From there, a normalized difference between a plurality of windows of the high energy peak is determined and subsequent output of the generator is based upon the normalized difference.
Abstract:
A well-logging device may include a housing to be positioned within a borehole of a subterranean formation and at least one radiation source carried by the housing to direct radiation into the subterranean formation. The well-logging device may also include noble gas-based radiation detectors carried by the housing to detect radiation from the subterranean formation. At least one of the noble detectors is at a first axial spacing from the at least one radiation source, and at least one other of the noble gas-based radiation detectors is at a second axial spacing from the at least one radiation source different from the first axial spacing. A controller may determine at least one property of the subterranean formation based upon the detected radiation from the noble gas-based radiation detectors.