Abstract:
A downhole tool operable for conveyance within a wellbore extending into a subterranean formation, and for obtaining one or more measurements of the subterranean formation, wherein the downhole tool comprises a sensor, a pressure housing containing the sensor and mounted on an external surface of the downhole tool, and a sliding stabilizer covering the pressure housing.
Abstract:
A well-logging device may include a housing to be positioned within a borehole of a subterranean formation, and at least one radiation source carried by the housing to direct radiation into the subterranean formation. The well-logging device may also include noble gas-based radiation detectors carried by the housing in azimuthally spaced relation to detect radiation from the subterranean formation. A controller may determine at least one property of the subterranean formation based upon the detected radiation from the noble gas-based radiation detectors.
Abstract:
An apparatus can measure characteristics of a formation surrounding a borehole. The apparatus includes a tool body having a neutron measurement section and a density measurement section. The neutron measurement section includes a neutron source and a neutron detector arrangement spaced in an axial direction from the neutron source. The density measurement section includes a gamma ray source and a gamma ray detector arrangement spaced in an axial direction from the gamma ray source. The neutron measurement section and the density measurement section are positioned in the tool body so that the sections overlap in the axial direction and are azimuthally spaced apart in the tool body. The tool body also includes shielding to block a direct signal path from the neutron source to the gamma ray detector arrangement and to block a direct signal path from the gamma ray source to the neutron detector arrangement.
Abstract:
A well-logging device may include a housing to be positioned within a larger borehole of a subterranean formation and thereby define a stand-off distance with respect to the larger borehole. The well-logging device may also include at least one radiation source carried by the housing to direct radiation into the subterranean formation, and radiation detectors carried by the housing in azimuthally spaced relation to detect radiation from the subterranean formation. The well-logging device may further include a controller to cooperate with the radiation detectors to determine at least one property of the subterranean formation corrected for the stand-off distance.
Abstract:
Downhole drilling fluid measurements are made as a function of time or as a function of depth. A change in the downhole drilling fluid measurements is correlated to a feature of a formation penetrated by a drill bit or to a feature of fluids in the formation. The downhole drilling fluid measurements may include density, photoelectric factor, hydrogen index, salinity, thermal neutron capture cross section (Sigma), resistivity, slowness, slowing down time, sound velocity, and elemental composition. The feature may include fluid balance, hole-cleaning, a kick, a shallow water flow, a formation fluid property, formation fluid typing, geosteering, geostopping, or an environmental correction. A downhole system has a measurement-while-drilling tool or a logging-while-drilling tool and a processor capable of obtaining the downhole drilling fluid measurements and correlating the change in the downhole drilling fluid measurements.
Abstract:
An apparatus can measure characteristics of a formation surrounding a borehole. The apparatus includes a tool body having a neutron measurement section and a density measurement section. The neutron measurement section includes a neutron source and a neutron detector arrangement spaced in an axial direction from the neutron source. The density measurement section includes a gamma ray source and a gamma ray detector arrangement spaced in an axial direction from the gamma ray source. The neutron measurement section and the density measurement section are positioned in the tool body so that the sections overlap in the axial direction and are azimuthally spaced apart in the tool body. The tool body also includes shielding to block a direct signal path from the neutron source to the gamma ray detector arrangement and to block a direct signal path from the gamma ray source to the neutron detector arrangement.
Abstract:
A well-logging device may include a housing to be positioned within a borehole of a subterranean formation, and at least one radiation source carried by the housing to direct radiation into the subterranean formation. The well-logging device may also include noble gas-based radiation detectors carried by the housing in azimuthally spaced relation to detect radiation from the subterranean formation. A controller may determine at least one property of the subterranean formation based upon the detected radiation from the noble gas-based radiation detectors.
Abstract:
A well-logging device may include a housing to be positioned within a borehole of a subterranean formation and at least one radiation source carried by the housing to direct radiation into the subterranean formation. The well-logging device may also include noble gas-based radiation detectors carried by the housing to detect radiation from the subterranean formation. At least one of the noble detectors is at a first axial spacing from the at least one radiation source, and at least one other of the noble gas-based radiation detectors is at a second axial spacing from the at least one radiation source different from the first axial spacing. A controller may determine at least one property of the subterranean formation based upon the detected radiation from the noble gas-based radiation detectors.