Abstract:
A synthetic multi-string musical instrument captures a stream of expressive gestures indicated on a multi-touch sensitive display for note/chord soundings and associated performance effects and embellishments. Visual cues in accord with a musical score may be revealed/advanced at a current performance tempo, but it is the user's gestures that actually drive the audible performance rendering via digital synthesis. Opportunities for user expression (or variance from score) include onset and duration of note soundings, tempo changes, as well as uncued string bend effects, vibrato, etc. Gesturing mechanism are provide to allow user musicians to sound chords without having to register precisely accurate multi-touch screen contacts. This can be especially helpful for mobile phone, media player and game controller embodiments, where there is generally limited real-estate to display six (6) or more strings, and user fingers are generally too fat to precisely contact such strings.
Abstract:
A synthetic multi-string musical instrument captures a stream of expressive gestures indicated on a multi-touch sensitive display for note/chord soundings and associated performance effects and embellishments. Visual cues in accord with a musical score may be revealed/advanced at a current performance tempo, but it is the user's gestures that actually drive the audible performance rendering via digital synthesis. Opportunities for user expression (or variance from score) include onset and duration of note soundings, tempo changes, as well as uncued string bend effects, vibrato, etc. Gesturing mechanism are provide to allow user musicians to sound chords without having to register precisely accurate multi-touch screen contacts. This can be especially helpful for mobile phone, media player and game controller embodiments, where there is generally limited real-estate to display six (6) or more strings, and user fingers are generally too fat to precisely contact such strings.
Abstract:
Techniques have been developed to facilitate (1) the capture and pitch correction of vocal performances on handheld or other portable computing devices and (2) the mixing of such pitch-corrected vocal performances with backing tracks for audible rendering on targets that include such portable computing devices and as well as desktops, workstations, gaming stations, even telephony targets. Implementations of the described techniques employ signal processing techniques and allocations of system functionality that are suitable given the generally limited capabilities of such handheld or portable computing devices and that facilitate efficient encoding and communication of the pitch-corrected vocal performances (or precursors or derivatives thereof) via wireless and/or wired bandwidth-limited networks for rendering on portable computing devices or other targets.
Abstract:
Techniques have been developed to facilitate (1) the capture and pitch correction of vocal performances on handheld or other portable computing devices and (2) the mixing of such pitch-corrected vocal performances with backing tracks for audible rendering on targets that include such portable computing devices and as well as desktops, workstations, gaming stations, even telephony targets. Implementations of the described techniques employ signal processing techniques and allocations of system functionality that are suitable given the generally limited capabilities of such handheld or portable computing devices and that facilitate efficient encoding and communication of the pitch-corrected vocal performances (or precursors or derivatives thereof) via wireless and/or wired bandwidth-limited networks for rendering on portable computing devices or other targets.
Abstract:
Vocal musical performances may be captured and continuously pitch-corrected at a mobile device for mixing and rendering with backing tracks in ways that create compelling user experiences. In some cases, the vocal performances of individual users are captured in the context of a karaoke-style presentation of lyrics in correspondence with audible renderings of a backing track. Such performances can be pitch-corrected in real-time at the mobile device in accord with pitch correction settings. In some cases, such pitch correction settings code a particular key or scale for the vocal performance or for portions thereof. In some cases, pitch correction settings include a score-coded melody sequence of note targets supplied with, or for association with, the lyrics and/or backing track. In some cases, pitch correction settings are dynamically variable based on gestures captured at a user interface.
Abstract:
Techniques have been developed to facilitate (1) the capture and pitch correction of vocal performances on handheld or other portable computing devices and (2) the mixing of such pitch-corrected vocal performances with backing tracks for audible rendering on targets that include such portable computing devices and as well as desktops, workstations, gaming stations, even telephony targets. Implementations of the described techniques employ signal processing techniques and allocations of system functionality that are suitable given the generally limited capabilities of such handheld or portable computing devices and that facilitate efficient encoding and communication of the pitch-corrected vocal performances (or precursors or derivatives thereof) via wireless and/or wired bandwidth-limited networks for rendering on portable computing devices or other targets.
Abstract:
Vocal musical performances may be captured and continuously pitch-corrected at a mobile device for mixing and rendering with backing tracks in ways that create compelling user experiences. In some cases, the vocal performances of individual users are captured in the context of a karaoke-style presentation of lyrics in correspondence with audible renderings of a backing track. Such performances can be pitch-corrected in real-time at the mobile device in accord with pitch correction settings. In some cases, such pitch correction settings code a particular key or scale for the vocal performance or for portions thereof. In some cases, pitch correction settings include a score-coded melody sequence of note targets supplied with, or for association with, the lyrics and/or backing track. In some cases, pitch correction settings are dynamically variable based on gestures captured at a user interface.
Abstract:
Synthetic multi-string musical instruments have been developed for capturing and rendering musical performances on handheld or other portable devices in which a multi-touch sensitive display provides one of the input vectors for an expressive performance by a user or musician. Visual cues may be provided on the multi-touch sensitive display to guide the user in a performance based on a musical score. Alternatively, or in addition, uncued freestyle modes of operation may be provided. In either case, it is not the musical score that drives digital synthesis and audible rendering of the synthetic multi-string musical instrument. Rather, it is the stream of user gestures captured at least in part using the multi-touch sensitive display that drives the digital synthesis and audible rendering.
Abstract:
Techniques have been developed to facilitate (1) the capture and pitch correction of vocal performances on handheld or other portable computing devices and (2) the mixing of such pitch-corrected vocal performances with backing tracks for audible rendering on targets that include such portable computing devices and as well as desktops, workstations, gaming stations, even telephony targets. Implementations of the described techniques employ signal processing techniques and allocations of system functionality that are suitable given the generally limited capabilities of such handheld or portable computing devices and that facilitate efficient encoding and communication of the pitch-corrected vocal performances (or precursors or derivatives thereof) via wireless and/or wired bandwidth-limited networks for rendering on portable computing devices or other targets.